Header logo is ps

ps Silvia Zuffi
Silvia Zuffi (Project leader)
Guest Scientist
ps Michael Black
Michael Black
Director
ps Oren Freifeld
Oren Freifeld
Alumni
4 results

2013


Estimating Human Pose with Flowing Puppets
Estimating Human Pose with Flowing Puppets

Zuffi, S., Romero, J., Schmid, C., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3312-3319, 2013 (inproceedings)

Abstract
We address the problem of upper-body human pose estimation in uncontrolled monocular video sequences, without manual initialization. Most current methods focus on isolated video frames and often fail to correctly localize arms and hands. Inferring pose over a video sequence is advantageous because poses of people in adjacent frames exhibit properties of smooth variation due to the nature of human and camera motion. To exploit this, previous methods have used prior knowledge about distinctive actions or generic temporal priors combined with static image likelihoods to track people in motion. Here we take a different approach based on a simple observation: Information about how a person moves from frame to frame is present in the optical flow field. We develop an approach for tracking articulated motions that "links" articulated shape models of people in adjacent frames trough the dense optical flow. Key to this approach is a 2D shape model of the body that we use to compute how the body moves over time. The resulting "flowing puppets" provide a way of integrating image evidence across frames to improve pose inference. We apply our method on a challenging dataset of TV video sequences and show state-of-the-art performance.

pdf code data DOI Project Page Project Page Project Page [BibTex]

2013

pdf code data DOI Project Page Project Page Project Page [BibTex]

2012


From pictorial structures to deformable structures
From pictorial structures to deformable structures

Zuffi, S., Freifeld, O., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3546-3553, IEEE, June 2012 (inproceedings)

Abstract
Pictorial Structures (PS) define a probabilistic model of 2D articulated objects in images. Typical PS models assume an object can be represented by a set of rigid parts connected with pairwise constraints that define the prior probability of part configurations. These models are widely used to represent non-rigid articulated objects such as humans and animals despite the fact that such objects have parts that deform non-rigidly. Here we define a new Deformable Structures (DS) model that is a natural extension of previous PS models and that captures the non-rigid shape deformation of the parts. Each part in a DS model is represented by a low-dimensional shape deformation space and pairwise potentials between parts capture how the shape varies with pose and the shape of neighboring parts. A key advantage of such a model is that it more accurately models object boundaries. This enables image likelihood models that are more discriminative than previous PS likelihoods. This likelihood is learned using training imagery annotated using a DS “puppet.” We focus on a human DS model learned from 2D projections of a realistic 3D human body model and use it to infer human poses in images using a form of non-parametric belief propagation.

pdf sup mat code poster Project Page Project Page Project Page Project Page [BibTex]

2012

pdf sup mat code poster Project Page Project Page Project Page Project Page [BibTex]

2010


A {2D} human body model dressed in eigen clothing
A 2D human body model dressed in eigen clothing

Guan, P., Freifeld, O., Black, M. J.

In European Conf. on Computer Vision, (ECCV), pages: 285-298, Springer-Verlag, September 2010 (inproceedings)

Abstract
Detection, tracking, segmentation and pose estimation of people in monocular images are widely studied. Two-dimensional models of the human body are extensively used, however, they are typically fairly crude, representing the body either as a rough outline or in terms of articulated geometric primitives. We describe a new 2D model of the human body contour that combines an underlying naked body with a low-dimensional clothing model. The naked body is represented as a Contour Person that can take on a wide variety of poses and body shapes. Clothing is represented as a deformation from the underlying body contour. This deformation is learned from training examples using principal component analysis to produce eigen clothing. We find that the statistics of clothing deformations are skewed and we model the a priori probability of these deformations using a Beta distribution. The resulting generative model captures realistic human forms in monocular images and is used to infer 2D body shape and pose under clothing. We also use the coefficients of the eigen clothing to recognize different categories of clothing on dressed people. The method is evaluated quantitatively on synthetic and real images and achieves better accuracy than previous methods for estimating body shape under clothing.

pdf data poster Project Page [BibTex]

2010

pdf data poster Project Page [BibTex]


Contour people: A parameterized model of {2D} articulated human shape
Contour people: A parameterized model of 2D articulated human shape

Freifeld, O., Weiss, A., Zuffi, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR), pages: 639-646, IEEE, June 2010 (inproceedings)

Abstract
We define a new “contour person” model of the human body that has the expressive power of a detailed 3D model and the computational benefits of a simple 2D part-based model. The contour person (CP) model is learned from a 3D SCAPE model of the human body that captures natural shape and pose variations; the projected contours of this model, along with their segmentation into parts forms the training set. The CP model factors deformations of the body into three components: shape variation, viewpoint change and part rotation. This latter model also incorporates a learned non-rigid deformation model. The result is a 2D articulated model that is compact to represent, simple to compute with and more expressive than previous models. We demonstrate the value of such a model in 2D pose estimation and segmentation. Given an initial pose from a standard pictorial-structures method, we refine the pose and shape using an objective function that segments the scene into foreground and background regions. The result is a parametric, human-specific, image segmentation.

pdf slides video of CVPR talk Project Page [BibTex]

pdf slides video of CVPR talk Project Page [BibTex]