Perceiving Systems, Computer Vision

HIT: Estimating Internal Human Implicit Tissues from the Body Surface

2024

Conference Paper

ps


The creation of personalized anatomical digital twins is important in the fields of medicine, computer graphics, sports science, and biomechanics. To observe a subject's anatomy, expensive medical devices (MRI or CT) are required and the creation of the digital model is often time-consuming and involves manual effort. Instead, we leverage the fact that the shape of the body surface is correlated with the internal anatomy; for example, from surface observations alone, one can predict body composition and skeletal structure. In this work, we go further and learn to infer the 3D location of three important anatomic tissues: subcutaneous adipose tissue (fat), lean tissue (muscles and organs), and long bones. To learn to infer these tissues, we tackle several key challenges. We first create a dataset of human tissues by segmenting full-body MRI scans and registering the SMPL body mesh to the body surface. With this dataset, we train HIT (Human Implicit Tissues), an implicit function that, given a point inside a body, predicts its tissue class. HIT leverages the SMPL body model shape and pose parameters to canonicalize the medical data. Unlike SMPL, which is trained from upright 3D scans, the MRI scans are taken of subjects lying on a table, resulting in significant soft-tissue deformation. Consequently, HIT uses a learned volumetric deformation field that undoes these deformations. Since HIT is parameterized by SMPL, we can repose bodies or change the shape of subjects and the internal structures deform appropriately. We perform extensive experiments to validate HIT's ability to predict plausible internal structure for novel subjects. The dataset and HIT model are publicly available to foster future research in this direction.

Author(s): Marilyn Keller and Vaibhav Arora and Abdelmouttaleb Dakri and Shivam Chandhok and Jürgen Machann and Andreas Fritsche and Michael J. Black and Sergi Pujades
Book Title: IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)
Pages: 3480--3490
Year: 2024
Month: June

Department(s): Perceiving Systems
Bibtex Type: Conference Paper (inproceedings)
Paper Type: Conference

Event Name: CVPR 2024
Event Place: Seattle, USA

State: Published

Links: Project page
Attachments: Paper

BibTex

@inproceedings{HIT:keller:2024,
  title = {{HIT}: Estimating Internal Human Implicit Tissues from the Body Surface},
  author = {Keller, Marilyn and Arora, Vaibhav and Dakri, Abdelmouttaleb and Chandhok, Shivam and Machann, J{\"u}rgen and Fritsche, Andreas and Black, Michael J. and Pujades, Sergi},
  booktitle = {IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  pages = {3480--3490},
  month = jun,
  year = {2024},
  doi = {},
  month_numeric = {6}
}