2024
Stable Video Portraits
In European Conference on Computer Vision (ECCV 2024), LNCS, Springer Cham, European Conference on Computer Vision (ECCV 2024), October 2024 (inproceedings) Accepted
Abstract
Rapid advances in the field of generative AI and text-to-image methods in particular have transformed the way we interact with and perceive computer-generated imagery today. In parallel, much progress has been made in 3D face reconstruction, using 3D Morphable Models (3DMM). In this paper, we present Stable Video Portraits, a novel hybrid 2D/3D generation method that outputs photorealistic videos of talking faces leveraging a large pre-trained text-to-image prior (2D), controlled via a 3DMM (3D). Specifically, we introduce a person-specific fine-tuning of a general 2D stable diffusion model which we lift to a video model by providing temporal 3DMM sequences as conditioning and by introducing a temporal denoising procedure. As an output, this model generates temporally smooth imagery of a person with 3DMM-based controls, i.e., a person-specific avatar. The facial appearance of this person-specific avatar can be edited and morphed to text-defined celebrities, without any test-time fine-tuning. The method is analyzed quantitatively and qualitatively, and we show that our method outperforms state-of-the-art monocular head avatar methods.
ncs ps
Synthesizing Environment-Specific People in Photographs
Ostrek, M., O’Sullivan, C., Black, M., Thies, J.
In European Conference on Computer Vision (ECCV 2024), LNCS, Springer Cham, European Conference on Computer Vision (ECCV 2024), October 2024 (inproceedings) Accepted
Abstract
We present ESP, a novel method for context-aware full-body generation, that enables photo-realistic synthesis and inpainting of people wearing clothing that is semantically appropriate for the scene depicted in an input photograph. ESP is conditioned on a 2D pose and contextual cues that are extracted from the photograph of the scene and integrated into the generation process, where the clothing is modeled explicitly with human parsing masks (HPM). Generated HPMs are used as tight guiding masks for inpainting, such that no changes are made to the original background. Our models are trained on a dataset containing a set of in-the-wild photographs of people covering a wide range of different environments. The method is analyzed quantitatively and qualitatively, and we show that ESP outperforms the state-of-the-art on the task of contextual full-body generation.
ncs ps
Neuropostors: Neural Geometry-aware 3D Crowd Character Impostors
Ostrek, M., Mitra, N. J., O’Sullivan, C.
In 2024 27th International Conference on Pattern Recognition (ICPR), Springer, 2024 27th International Conference on Pattern Recognition (ICPR), June 2024 (inproceedings) Accepted
Abstract
Crowd rendering and animation was a very active research area over a decade ago, but in recent years this has lessened, mainly due to improvements in graphics acceleration hardware. Nevertheless, there is still a high demand for generating varied crowd appearances and animation for games, movie production, and mixed-reality applications. Current approaches are still limited in terms of both the behavioral and appearance aspects of virtual characters due to (i) high memory and computational demands; and (ii) person-hours needed of skilled artists in the context of short production cycles. A promising previous approach to generating varied crowds was the use of pre-computed impostor representations for crowd characters, which could replace an animation of a 3D mesh with a simplified 2D impostor for every frame of an animation sequence, e.g., Geopostors [1]. However, with their high memory demands at a time when improvements in consumer graphics accelerators were outpacing memory availability, the practicality of such methods was limited. Inspired by this early work and recent advances in the field of Neural Rendering, we present a new character representation: Neuropostors. We train a Convolutional Neural Network as a means of compressing both the geometric properties and animation key-frames for a 3D character, thereby allowing for constant-time rendering of animated characters from arbitrary camera views. Our method also allows for explicit illumination and material control, by utilizing a flexible rendering equation that is connected to the outputs of the neural network.
ncs ps