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Figure 1. VAREN is learned from real horses and models pose-dependent deformations at the muscle level, enabling the generation of 3D
horses with high realism. Inspired by Muybridge [24], we show a sequence of frames of horses in motion, generated by VAREN, where the
first frame illustrates, for each row, the horse in the rest pose. We show three different shapes, obtained by sampling the VAREN model.

Abstract
Data-driven three-dimensional parametric shape mod-

els of the human body have gained enormous popularity
both for the analysis of visual data and for the genera-
tion of synthetic humans. Following a similar approach
for animals does not scale to the multitude of existing ani-
mal species, not to mention the difficulty of accessing sub-
jects to scan in 3D. However, we argue that for domestic
species of great importance, like the horse, it is a highly
valuable investment to put effort into gathering a large
dataset of real 3D scans, and learn a realistic 3D articu-
lated shape model. We introduce VAREN, a novel 3D ar-
ticulated parametric shape model learned from 3D scans
of many real horses. VAREN bridges synthesis and analysis
tasks, as the generated model instances have unprecedented
realism, while being able to represent horses of different
sizes and shapes. Differently from previous body models,
VAREN has two resolutions, an anatomical skeleton, and
interpretable, learned pose-dependent deformations, which
are related to the body muscles. We show with experiments
that this formulation has superior performance with respect
to previous strategies for modeling pose-dependent defor-

mations in the human body case, while also being more
compact and allowing an analysis of the relationship be-
tween articulation and muscle deformation during articu-
lated motion. The VAREN model and data are available at
https://varen.is.tue.mpg.de.

1. Introduction

Horses are arguably the most valuable domestic animal and
there is a large industry focused on their breeding, care,
training, and use in sports. Buying a horse is a large in-
vestment, and keeping a horse requires resources and time.
Although they are large animals, horses are delicate. The
accumulated loads from training and competition frequently
result in unrecoverable injuries in their skeletal or tendinous
limb structures, ultimately leading to euthanasia. Conse-
quently, among domestic animals, horses are widely studied
from a behavioral and biomechanical perspective, with the
aim of evaluating their performance, interpreting their state
of pain, and preventing injuries. To facilitate such analy-
sis using computer vision, our goal is to develop a highly
accurate and detailed 3D model of horses that can be articu-
lated, fit to data, and animated. Here we learn such a model



Figure 2. Dynamic 3D horse scanner. The horse is asked to lift
one hind limb.

(see Fig. 1) using a novel formulation that captures pose-
dependent muscle deformations. Such a model may facili-
tate 3D motion analysis in-the-wild, body shape estimation,
diagnosis of illness and performance, horse-human interac-
tion and behavior analysis, and generation of 3D synthetic
horses for VFX, VR, AR, and gaming. In particular, ac-
curate markerless motion capture of horses would provide
a valuable new tool for the study of horse motion during
challenging activities in natural environments.

For humans, there has been great progress on capturing
their 3D shape and pose from images and video. This work
often exploits the SMPL body model [22], a 3D mesh-based
representation of the human body, controlled by 3D shape
and pose parameters. SMPL provides strong priors over hu-
man shape and pose, enabling 3D pose reconstruction from
ambiguous 2D data. Creating such a 3D model of horses
is more challenging. While 3D articulated shape models of
horses have been created in the past, they lack realism and
expressiveness. In contrast, models like SMPL are learned
from thousands of scans, and include an expressive shape
space and a pose-dependent deformation model to represent
how the body deforms under articulation. Unfortunately,
obtaining high-quality 3D scans of horses in a variety of
poses is challenging. To fill the gap, we need to (1) cap-
ture 3D scans of horses in motion and (2) formulate a new
parametric 3D model of horses that represents important as-
pects of their physiology. In both cases, our solutions devi-
ate from prior work on humans to accommodate the unique
aspects of horses.

Dataset. We use a novel setup (3dMD Ltd.) to capture
dynamic 3D scans of horses over time (see Fig. 2). Scan-
ning a large number of horses presents technical and practi-
cal challenges, requiring a large cooperative effort between
computer scientists and animal care experts. Our dataset in-
cludes 50 horses of different breeds and sizes, ranging from
small ponies to large horses, with a height difference of
more than 1.5 meters. This shape variation is significantly
larger than with humans. To model pose-dependent shape
changes, we need to capture the horses in a range of poses.
Additionally, the animal is always managed by a care per-

Figure 3. Samples from the VAREN model result in a diversity of
horse shapes.

son who may occlude the horse during scanning, resulting
in missing data. All these issues present novel challenges
that we overcome. As a result, our dataset includes in to-
tal approximately 4000 cleaned up raw 3D scans, for which
we provide accurately registered 3D meshes – training and
testing split. Written consent was provided by all animal
owners before the animals entered the study. The data col-
lection procedure did not include any invasive technique,
therefore no animal ethical approval was needed.

Model. Using this unique dataset, we train a new model
named VAREN (pronounced Varenne1 in French). VAREN
is the first 3D articulated model of horses that is learned
from real data and that models pose-dependent muscle de-
formations. Samples from the VAREN model are shown in
a neutral pose in Fig. 3 and animated using motion capture
data in Fig. 1. To model horses in motion, we must also
capture the non-rigid deformations of the body that occur
during movement. Previous work on humans models pose-
dependent deformations that are learned from 3D scans and
conditioned on the body articulation. In particular, STAR
[25] models such deformations locally based on the dis-
tance from the nearby joints. Such methods do not explic-
itly model the deformation of the muscles. Scans of humans
are typically acquired with some form of clothing (not fully
naked) and most humans have a layer of subcutaneous adi-
pose tissue that hides the musculature. Horses, however,
are different. They generally carry less body fat than hu-
mans and their hair is short, making their musculature more
directly observable. Modeling the visible muscle deforma-
tion is important because it relates directly to the health and
performance of the animal. To that end, we propose a novel
learned muscle-based deformation model. Specifically, we
group the body surface points into regions that correspond
to the superficial muscles, rather than based on their dis-
tance to the joints. Note that a single muscle can span more
than one body part (see for example the back muscle in
Fig. 4) and it is important to capture these long-range cor-

1Varenne is considered to be the best trotter of all time. No other trotter
has won so many of the most important races in the world and set as many
records as Varenne. Source: Wikipedia.



Figure 4. Skeleton and muscles. From left: anatomical skeleton
manually aligned to the model template, selected joints, muscle
structure and skin labels on the template. We consider 76 muscles.
Head, tail and hooves have no muscle definitions.

relations. In VAREN, we define deformations per-muscle
and learn the influence of body part articulation on the ob-
servable muscle deformation from the scan data. We find
that, in comparison with previous formulations like those
used in SMPL and STAR, our proposed muscle-inspired
pose-dependent deformation model has superior accuracy,
while also being more compact and interpretable. This is
relevant for our high-resolution horse model. While we do
not measure muscle activation directly, our formulation can
be relevant for research on body pose using measurements
of muscle activation [11]. A further novelty of our model,
compared with previous work, is that we define the model
skeleton, that is the location of the joints in the kinematic
tree, based on real horse anatomy. Exploiting a 3D model
of the horse skeleton, and with the help of an expert on
horse biomechanics, we define the articulation points for
the model. Previous human body models define the joint
locations as a result of an optimization procedure, result-
ing in a per-model definition with poor correspondence to
the true anatomical skeleton, in particular at the shoulders
and hip joints [17]. These models are motivated by appli-
cations in computer graphics and vision, where, in many
cases, a precise anatomical skeleton may not be needed. For
a model like VAREN to be valuable to horse breeders, train-
ers, and veterinarians, it should provide information that is
anatomically relevant. Moreover, an anatomical definition
of the model joints, being model-independent, could facili-
tate comparison and motion data transfer between different
models, and, eventually, species.

In summary, we make two key contributions. First, we
provide a new dataset for the modeling of horse shape and
pose. The quantity, resolution, variation, and quality of the
VAREN data dwarfs any previous dataset of animal shape
and pose, and opens up the possibility for the community to
explore new questions in 3D shape representation. Second,
we develop a new shape model that drives the observable
deformation of the muscles based on the animal pose using
an anatomical skeleton.

2. Related Work
We review prior work on learning human body models from
data, as our problem and setting share similarities with
methods proposed in this case. Then, we present the few

3D models for animals previously proposed. In addition, we
provide an overview of methods for 3D animal reconstruc-
tion from visual data, in order to set the context in which we
see our novel model applied.

Human Body Models. There is a long history of learn-
ing 3D mesh-based models of the human body from 3D
scans [4–6, 10, 13, 22, 26, 35]. There is also recent work
on implicit representations that we do not consider here,
e.g. [3, 21, 23]. Most recent work is based on SMPL [22],
a 3D body model that is based on vertex deformations de-
fined by linear spaces. SMPL is fully data-driven: pose de-
pendent deformations are defined as global representations
and learned from data. One issue with SMPL is that the
pose-dependent deformations are not local and capture spu-
rious long-range correlations in the data. This is addressed
by STAR [25], which adds locality to the joints to the pose-
dependent deformations, weighting the outcome of global
linear spaces with the distance from skeleton joints. While
STAR conditions the pose deformation on the rough BMI of
the body, none of the models above explicitly model the ob-
servable muscle deformation. VAREN addresses this for the
first time. Also, unlike VAREN, the prior methods model
articulation using a kinematic tree only loosely based on
the human skeleton. A first direction into modeling the hu-
man skeleton is OSSO [17], who models the human body
skeleton, followed by SKEL [18], which drives the pose of
SMPL with a biomechanical skeletal model. SKEL, how-
ever, uses the default SMPL model deformations and, un-
like VAREN does not train deformations that are driven by
the skeletal pose.

Animal Body Models. The modeling of animal shape for
computer vision applications has received less attention.
Since 3D scanning of animals is challenging, research has
mainly focused on learning from images; e.g. Ramanan et
al. learn 2D articulated models [27], while Cashman and
Fitzgibbon [9] adapt a rough mean shape using 2D im-
age cues to reconstruct dolphins and bears in 3D. Zuffi et
al. learn SMAL, a parametric 3D animal shape model, using
3D scans of toys [44]. Wang et al. learn the 3D shape vari-
ation of birds from images starting from a synthetic model
[32]. Li et al. learn a horse-specific model similar to SMAL,
using 3D scans of horse figurines [20]. Still, others learn
to represent category-specific shapes as either meshes [39]
or implicit surfaces [14], but do not decouple shape and
pose. None of these methods learn 3D articulated models
from real 3D scans, which contain noise. The multi-species
SMAL model [44] contains an Equine class, but SMAL is
learned from a limited number of toys, thus horses gener-
ated with the SMAL model do not exhibit a wide range of
diverse shapes. The more recent hSMAL model is horse-
specific [20]. While learned from a larger number of horses
of different shapes, hSMAL is still learned from toys, and
has a limited resolution. While useful for reconstructing



horses from images and video, we find in our experiments
that hSMAL is not expressive enough to accurately repre-
sent real horses with high detail. Being learned from rigid
toys, both models do not address body deformations.

Animal 3D Reconstruction. The 3D reconstruction of
animals from images and video follows a model-based or
a model free approach. In the first case, an existing 3D
shape model of the species of interest is available, and the
method outputs the model parameters of 3D shape and pose.
This approach is useful when dealing with challenging input
modalities, like in-the-wild monocular images, or the goal
is to estimate animal shape and pose for downstream anal-
ysis tasks. For example, Zuffi et al. address multi-species
3D reconstruction [45], Kanazawa et al. learn 3D deforma-
tions of animals [15], Badger et al. reconstruct 3D birds [7],
while several methods estimate the shape and pose of dogs
[8, 29, 30]. Our work fits in this category, but provides a
3D model with a higher level of realism than any previous
methods. Model-free methods, in contrast, do not assume
that a 3D model of the animal class is available, and the
output of these methods is typically a 3D surface, in case of
static input, or, eventually, a 3D animatable object in case
of a video input. Works in this class include CMR [16]
and DOVE [33], which reconstruct birds from images and
ViSER [37], LASR [36], BANMo [38] and PPR [40], which
reconstruct articulated 3D shapes from video, the latter in-
corporating physical constraints. Kokkinos and Kokkinos
learn 3D reconstruction from video without using a shape
model by relying only on a template [19]. MagicPony [34],
LASSIE [41], Hi-LASSIE [42], ARTIC3D [43] learn 3D
reconstruction from image collections.

3. Method

We learn the VAREN model in two stages. First, we learn an
articulated parametric shape model from a set of scans, that
we call prototypes, which are of different horses in a neu-
tral pose, that is, not undergoing pose-dependent deforma-
tions. This gives us a model with a shape space and generic
articulation. We then align, in an unsupervised way, this
static model to the dynamic 3D scans in which the proto-
type horses perform different movements. From this data,
namely the scans and the alignment parameters of 3D shape,
pose and translation, the VAREN network learns a pose-
dependent deformation model that improves the matching
between the learned model and the scans. The novel defor-
mation model is a function of the shape and pose parame-
ters, such that, at test time, the network generates a shaped
and posed horse, with realistic pose-dependent deforma-
tions, given the parameters. The pose-dependent deforma-
tion model is defined on the basis of anatomical structures
that we incorporate into VAREN from a purchased realistic
graphics (CG) model [1], which includes the body skeleton

Figure 5. Comparison between the average equine model in
SMAL (left), the hSMAL+ template (middle) and the VAREN
template (right). Learned from real horses, the VAREN template
has a more proportioned neck with respect to hSMAL+.

Figure 6. Visualization of the VAREN shape space. We capture
small ponies, large breeds, and many in between, obtaining a shape
space with variation in size, morphology and face features. The
tail and mane are tied, and not considered as part of body shape
change.

and the muscles. In the following, we detail the procedure
to learn the horse model from the prototypes, the creation of
the training dataset, and the definition of the VAREN net-
work.

3.1. VAREN Horse Model

Alignment of the Prototype Scans. We follow a model-
based approach to express the prototypes in a common
topology, specifically, as the alignment model, we use hS-
MAL [20], a recently proposed articulated horse model
(Fig. 5). The hSMAL model follows the formulation of
SMPL, and is defined by a triangular mesh template vt, with
nV vertices, a matrix B of shape 3nV ×nB containing the
nB basis vectors of a linear shape deformation space, a joint
regressor Jr that maps model vertices to a set of nJ joint
locations, and a skinning weight matrix W . A horse is gen-
erated, given shape parameters β and pose parameters θ, by
first deforming the template into an intrinsic shape vs, then
applying Linear Blend Skinning (LBS) to rotate the body
parts according to the given pose:

vs = vt +BβT

v = LBS(vs, θ;W,Jr). (1)

While able to represent horses of different shapes, we found
that the hSMAL model has, in our case, two limitations: a
low resolution (the model has about 1.5K vertices) and a
shape space that is not sufficiently expressive to accurately
capture the shape of real horses. To overcome these limi-
tations, we create an hSMAL model with an increased res-
olution (3647 vertices) and additional shape deformations.



We call this model hSMAL+. Furthermore, we observed
that the purchased CG model [1], in addition to containing
anatomical structures, has a more natural posture than hS-
MAL+. Therefore, we modify the rest pose of hSMAL+ to
match the pose of the CG model. This is done by fitting
hSMAL+ to the CG model and using the obtained mesh as
the new template. In hSMAL+ we retain skinning weights
and part segmentations from the original hSMAL model.

Additional Shape Deformations. We augment the hS-
MAL shape space by defining additional dimensions in the
shape deformation matrix B (Eq. 1) to obtain a linear scal-
ing of a set of body parts. Note that limb scaling has been
applied before to animal models, but our formulation is
novel, as previous work [8] applies scaling during the LBS
process, while here we define scaling in the model shape
space. Let j be a body part for which we want to add scal-
ing as an additional dimension in the shape space. We de-
fine a new shape matrix B1 of dimension 3nV ×(nB+1) by
adding a new column to the shape matrix B:

B1 = B|Bj

Bj = sjvj,c, (2)

where vj,c is a column vector corresponding to the template,
but with non-zero values only for the coordinate c of the ver-
tices of the part j we want to scale, and sj is a scaling factor.
Here j can also indicate a set of parts, for example, all the
segments of the tail. Expanding B is not sufficient, as the
deformation we obtain is expressed for the model template
vt, while we need it to be applied to the part vertices of the
intrinsic shape vs (Eq. 1). Therefore, we add an iterative
procedure that estimates a vertex shift dv for the part ver-
tices. Let J be the joints of the extended model with shape
space B1, J0 be the joints of the original model, and Js a
vector of cumulative joint shifts initialized with zero val-
ues. In an iterative process that considers all the body joints
from the root to the leaves of the kinematic tree, for each
body part j, we compute the vertex shift as dv(j) = Js(j) +
J0(j) - J(j), add it to the part vertices, and then add dv(j)
to the children of the part j in Js, such that the joint shift
is propagated through the kinematic tree. The set of body
parts we consider for limb scaling are the ears, the legs and
the tail, resulting in an additional set of 6 deformation vec-
tors, as we group the left and right ears in a single part. The
scaling factors in Equation 2 for these parts are 0.05 for the
ears, where we scale the whole part, and 0.1 for the legs
and tail, where we scale only the vertical axis. Note that the
scaling factors in Equation 2 are applied to define the new
shape space dimensions, but the scaling is then weighted
with corresponding shape variables as for the original PCA
dimensions.

Model-based Alignment. In order to align the hSMAL+
model to the prototypes, first, we manually annotate land-

Figure 7. Model alignment to the scans. Examples of noisy (top)
and clean (bottom) registrations. In white is the scan and in purple
is the model registration.

marks on the selected scans: for most of the prototypes we
annotate 7 landmarks: the tip of the four hooves, the tip of
the ears, and the tip of the tail. Note that this process, while
manual, is applied to only one frame per horse, resulting
in a very small fraction of the time invested to record a spe-
cific subject. The alignment procedure minimizes an energy
with data terms that consist of the mesh-to-scan and scan-
to-mesh distances between the scan and the model, and the
distance between landmarks defined on the model and an-
notated on the scans. We add regularization terms for the β
and the θ variables, set as the square of the elements of the
β vector, and the L1 norm of the θ values, respectively. The
latter formulation is as a consequence of the fact that in this
stage we are aligning scans that are close to the model neu-
tral pose by selection. The pose prior is stronger for the tail,
which is often partially observed, and weaker for the ears,
which might not be in a neutral pose. We optimize the en-
ergy with Chumpy [2], with an annealing schedule that de-
creases the weight of the pose prior and increases the weight
of the data terms. After the model-based alignment, we in-
crease the resolution of the hSMAL+ model (from 3647 to
13873 vertices) and perform a model-free alignment, where,
to capture the fine-level details of the scans, we optimize
over the vertices. In this case, we use two regularization
terms: as-rigid-as-possible (ARAP) [31] regularization, and
a coupling term between the 3D vertices and the model so-
lution. Note that when increasing the model resolution, we
do not alter the vertices that are inside the head (tongue and
palate). Moreover, we keep the low-resolution vertices as
the first 3647 vertices of the model, such that VAREN can
be easily used at two resolutions.

VAREN Shape Space. The VAREN horse model shares
the same formulation of SMPL and hSMAL expressed by
Equation 1. The shape space of the model, indicated by the
matrix B, is learned in the following way. Once the proto-
type scans have been aligned, they are all brought into the
neutral pose of the alignment model (they are already close
to this pose). The mean template shape is computed, giving
an averaged prototype horse (Fig. 5), which is subtracted
from the prototypes. Then Principal Component Analysis



(PCA) is applied, giving a linear shape space of skin de-
formations (Fig. 6). On the new template, we define the
skeleton and muscle skin labels.

3.1.1 Anatomical Structures

In this section we describe how we incorporate anatomi-
cal structures, namely the skeleton and the muscles, into
the VAREN model. Our goal is to define the model skele-
ton joints in correspondence with real joints, and charac-
terize the model vertices according to the muscle they are
closest to, as this association will be exploited in the pose-
dependent deformation model. To this end, we exploit a
realistic CG model of a horse [1] that includes a skeleton
and muscles. We have already exploited the CG model to
define the neutral pose for VAREN (Fig. 5), with the fur-
ther advantage that now the VAREN template has the same
pose of the skeleton of the CG model. However, given the
body part proportions differ between the GC model and
the VAREN template, we manually deform the individual
skeleton bones to better match the template. We then se-
lect a set of joint locations on the skeleton that are anatom-
ically relevant and closest to the hSMAL+ joints (Fig. 4).
Finally, we re-compute the joint regressor of the VAREN
model such that the anatomical joints are used. In addi-
tion to the existing hSMAL joints, we define two additional
joints, corresponding to the left and right scapula. We found
this necessary to fit the model to complex poses. A joint
in correspondence to the top of the scapula models biome-
chanical principles for horses and dogs [12]. The muscles
in the purchased CG model are grouped by large sections.
We separate them into individual muscles, label them, and
find the closest muscle for each vertex of the VAREN reg-
istration to the CG model. These labels are then transferred
to the VAREN template. In this way, we obtain muscle la-
bels for each vertex of the VAREN horse model (Fig. 4).
Now that we have a model with anatomical joints and per-
vertex muscle indices, first we re-register the prototypes to
obtain the shape and pose parameters for the new model,
then we learn pose-dependent deformations from the dy-
namic scans. The deformations are learned from an opti-
mization network on a dataset of 3D scans aligned to the
horse model. In the following, we describe the generation
of the training set and the VAREN network.

3.2. Training Dataset

The training dataset is composed by a set of scans and cor-
responding alignment parameters. The scans are frames of
a set of clips containing the same prototype horses used to
learn the shape model performing different activities: stand-
ing still, moving the neck forward and toward a side, and
moving the legs (see Fig. 2). As a pre-processing step,
the scans are cleaned-up to remove the floor and the horse
owner using a simple procedure based on point cloud clus-

Figure 8. Post-alignment cleaning. We exploit the model regis-
tration to clean up the 3D scans. Left column: input scan, mid-
dle: cleaning with a single bounding box around the registration.
Right: cleaning with a set of bounding boxes. The horse head is
sometimes not captured due to the presence of a person.

tering. We register the VAREN model to the dynamic se-
quences with an alignment procedure similar to the one used
for the prototypes. The difference here is that we do not
optimize for the horse shape, but keep the shape parame-
ter fixed to the one computed with the VAREN prototype
registration. For the first frame, we also initialize with the
prototype pose. After the first, each frame is initialized with
the previous solution, and the pose prior takes the form of
the L1 distance from the previous pose. The alignment pro-
cedure does not require manual annotations. However, due
to the presence of noisy frames, where the pre-processing
clean-up failed, sometimes the alignment process gives a
wrong result, and we need to annotate a few landmarks to
correct such cases. We annotate about the 1% of the frames
with about 4 landmarks. Moreover, we need to remove from
the training set those frames where complete parts are miss-
ing. While we can deal with large holes in the scans, the
alignment may return an incorrect solution if the entire head
or a whole limb is missing. On the other hand, we allow ears
to be missing in the scans, as the pose-dependent deforma-
tion model does not include them (see Fig. 4). Examples
of registrations are shown in Fig. 7. The model registration
can be used to further clean up and filter the data. We do this
with a procedure that creates a set of bounding boxes around
the registration to filter out the scan regions that are not per-
tinent to the horse (Fig. 8). We then compute the maximum
scan-to-mesh distance to filter out scans with residual out-
liers. We retain, in total, about 3.6K training scans. Note
that not all the prototype scans have been used to create the
training set, as we leave out a few for testing.

3.3. VAREN Network

The pose-dependent deformations model is an additive term
augmenting the intrinsic body shape (see Eq. 1):

vs+d = vt +BβT + dvm(θ, β), (3)

where dvm are the muscle deformations, obtained as:

dvm,Ii(θ, β) = Di(βm), (4)



where i is the muscle index, Di is a decoder composed by a
linear layer of dimension (4(nJ−1)+2)×3nIi , with Ii the
set of indices of the skin vertices associated with muscle i.
The number of joints nJ=38, excluding the root, is multi-
plied by 4 as we use quaternions to represent pose. Equa-
tion 4 is applied for each muscle. The muscle deformation
variable βm is defined as:

βm = A ◦Wm(θ2,..nJ
, β1,2), (5)

where A is a selection matrix of dimension
nM×(4(nJ−1)+2), with nM=76 being the number
of muscles. We initialize A(i, 4k:4k+4) = 1 if muscle
i belongs to part j, with k ∈ N(j), otherwise 0. Here
N(j) indicates the set composed by the part j and its
neighbors. An advantage of our formulation is that each
row of the product A ◦ Wm is now a weighting vector
for the pose parameters indicating the influence between
muscles and body parts, regardless of the pose, while the
muscle deformation variable βm indicates the strength of
the muscle deformation. Both A and Wm are optimized
during training. The last column of Fig. 9 shows the
association between muscle deformation and body parts.

3.3.1 Network Training

During training, the network reads the training set, and
stores the 3D pose, shape and translation estimated by the
alignment procedure. Input scans are resampled at a fixed
size of 20000 points to have a uniform size within a batch,
with size 4. We store the alignment parameters in memory
such that, during network optimization, pose and translation
variables can be fine-tuned. However, we found in our ex-
periments that fine-tuning the alignment variables does not
significantly change the results, indicating that the training
registrations are already of good quality. Here we present
results for which we did not fine-tune the training data. We
train using different losses: the Chamfer distance (from the
PyTorch3D library [28]) between the generated horse mesh
and the input scan, a regularization term, implemented as
an edge length minimization loss, also from PyTorch3D,
applied to the deformations dvm and only to the mesh tri-
angles on the muscle boundaries, and a regularization loss
on the matrix A, to favor small values for body parts that
are likely not to influence the muscles, namely the tail, feet,
mouth and ears. This is implemented as the L1 norm of the
matrix entries for these parts. Weights for the losses are:
αdist=1e3, αreg=10, αbound=100, αA=1e3.

4. Experiments
We apply the VAREN network to a set of held-out align-
ments. As a baseline, we consider the model without pose-
dependent deformations. We also compare with defining
pose-dependent deformations as in SMPL and STAR.

SMPL Pose-dependent Deformations. The SMPL
model defines the pose-dependent deformations as a linear
model over the pose vector of relative rotation matrices (see
Eq. 9 in [22]). The pose feature vector is therefore of size
9(nJ−1), and the pose blend shapes is a matrix of shape
3nV ×9(nJ−1). When training to learn the pose blend
shapes, we use the Chamfer distance loss, the regularization
loss applied to the deformations, and a loss on the L1 norm
of the pose blend shapes values. Weights for these losses
are: αdist=1e3, αreg=100, αreg,Bp

=1e3.

STAR Pose-dependent Deformations. The STAR model
defines the pose-dependent deformations as a set of per-
part linear models over the part and neighbors rotations, ex-
pressed with quaternions. The second value β2 of the shape
vector is added to the set of pose features, as it correlates
with the human BMI index. Here, lacking this informa-
tion for horses, we condition the deformation with the first
two elements of the β vector, as in the VAREN shape space
all the components capture morphological information (see
Fig. 6). Each of the nJ−1 linear models has dimension
(4(nJj +1)+ 2)×3nV , where nJj is the number of neigh-
bors of the part j. STAR defines the rotations relative to
the human neutral pose, as the template pose in the STAR
model is not neutral. This is not necessary for VAREN,
where the template is in a natural rest pose. STAR also
defines a set of activation weights, A, for each vertex, to
weight the output of each linear model. Here, A is a matrix
of shape (nJ−1)×nV that we initialize with the distance
between vertices and joints. Following STAR, A is passed
through a nonlinear rectifying function. During training,
we use as losses the Chamfer distance and the regulariza-
tion loss on the deformations. Weights for these losses are:
αdist=1e3, αreg=100. All networks are trained for 100
epochs, with a learning rate of 1e−5.

4.1. Test Datasets and Results

We consider two test sets. The In-shape test set, with 275
frames from 5 horses, includes the prototype horses used to
train the shape deformation model, but not used for training
the VAREN network. The Out-shape test set, 154 frames
for 6 horses, includes subjects that have not been used at
all. On the first set, we expect to obtain lower errors, and
see only the effect of the pose-dependent deformation term,
while the second set will provide a general performance as-
sessment of the whole VAREN model. Results are reported
in Table 1 and Table 2. We report errors in terms of av-
erage Chamfer distance, and of mesh-to-scan distance over
a subset of model vertices obtained by removing the head,
tail, ears, ankles and hooves. We do this to reduce the in-
fluence of the outliers and missing parts on the error scores.
VAREN provides the best accuracy in comparison with the
baseline and previous work. Figure 9 shows results for the
Out-shape dataset. Notice how VAREN generates realistic



Figure 9. Results. From left: scan, baseline (purple), baseline mesh-to-scan distance (two views), VAREN (blue), VAREN mesh-to-scan
distance (two views), VAREN with part colors, VAREN with muscle colored with the color of the part that gives the main contribution to
the deformation, computed as the argmax over body parts of the absolute value of the muscle deformation variable βm (Eq. 5). For the
mesh-to-scan visualization, distances are clipped at 4 cm, then normalized; darker regions indicate higher distance.

Chamfer Distance Mesh-to-Scan
mean std mean std

Baseline 10.32 1.03 8.20 0.89
SMPL 9.72 0.98 7.06 0.72
STAR 9.51 0.67 6.99 0.63
VAREN (Our) 9.37 0.74 6.35 0.59

Table 1. Results on the In-shape testset. Baseline is the model
without pose-dependent deformations. Errors in mm.

Chamfer Distance Mesh-to-Scan
mean std mean std

hSMAL 21.92 3.02 17.01 2.51
Baseline 12.00 1.96 10.07 2.55
SMPL 11.38 1.66 8.84 2.01
STAR 11.03 1.57 8.36 1.77
VAREN (Our) 10.88 1.59 7.78 1.71

Table 2. Results on the Out-shape testset. hSMAL uses the hS-
MAL model for alignment. Baseline is the model without pose-
dependent deformations. Errors in mm. Wilcoxon significance test
for STAR and VAREN comparison: p-values are 0.04 and 3.3e-06
for Chamfer and mesh-to-scan distance, respectively.

deformations, in particular for the neck region. We also il-
lustrate, for each muscle, the body part that most contributes
to its deformation.

5. Conclusion
We introduced VAREN, the first parametric 3D model of
horses learned from real data. In contrast to previous work,
VAREN exploits a novel formulation that captures pose-
dependent muscle deformations, resulting in better accu-
racy compared to state-of-the-art approaches, while also be-
ing more compact and connecting 3D pose to muscle defor-
mations. By focusing on quality and anatomical realism,
VAREN can support a wide set of AI applications in the
equestrian world.
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