
This paper has been accepted for publication in the
2023 IEEE European Conference on Mobile Robots.

Please cite as: Bonetto, E. and Ahmad, A. (2023). Synthetic Data-based Detection of Zebras in
Drone Imagery. IEEE European Conference on Mobile Robots (ECMR).

Synthetic Data-based Detection of Zebras in Drone Imagery
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Abstract— Nowadays, there is a wide availability of datasets
that enable the training of common object detectors or human
detectors. These come in the form of labelled real-world images
and require either a significant amount of human effort,
with a high probability of errors such as missing labels, or
very constrained scenarios, e.g. VICON systems. On the other
hand, uncommon scenarios, like aerial views, animals, like
wild zebras, or difficult-to-obtain information, such as human
shapes, are hardly available. To overcome this, synthetic data
generation with realistic rendering technologies has recently
gained traction and advanced research areas such as target
tracking and human pose estimation. However, subjects such
as wild animals are still usually not well represented in such
datasets. In this work, we first show that a pre-trained YOLO
detector can not identify zebras in real images recorded from
aerial viewpoints. To solve this, we present an approach for
training an animal detector using only synthetic data. We start
by generating a novel synthetic zebra dataset using GRADE,
a state-of-the-art framework for data generation. The dataset
includes RGB, depth, skeletal joint locations, pose, shape and
instance segmentations for each subject. We use this to train a
YOLO detector from scratch. Through extensive evaluations
of our model with real-world data from i) limited datasets
available on the internet and ii) a new one collected and
manually labelled by us, we show that we can detect zebras
by using only synthetic data during training. The code, results,
trained models, and both the generated and training data are
provided as open-source at https://eliabntt.github.
io/grade-rr.

I. INTRODUCTION

A large dataset that includes realism and diversity in
features is a fundamental building block for obtaining any
working and reliable deep-learning model. This is especially
true when dealing with visual tasks such as detection, seman-
tic segmentation and shape estimation. For these, variability
in both visual appearances and environmental conditions as
well as a high number of instances are required. A variety of
datasets have been introduced during the last decades to ad-
dress various image-based tasks like MNIST [1], COCO [2],
and PASCAL-VOC [3]. These have historically been based
on real-world data, be this either images or videos, manually
labelled by humans. Apart from being time-consuming and
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Fig. 1: An example image of our synthetically generated zebras in a Savanna
environment.

costly, this introduces errors such as missing and wrong
labels [4]. Examples of these can be visualized in Fig. 2
and Fig. 3. Furthermore, ground truth for specific tasks may
not be available either because it is hard to obtain, e.g.,
shape or skeletal information, or because it requires costly
manual labelling procedures. These limitations impede the
usage of these datasets in problems such as aerial human
pose estimation [5], animal pose estimation [6], [7], or aerial
wild-animal detection. For these reasons, methodologies
to generate synthetic data became more ubiquitous since
the advent of rendering engines such as Unity, Blender,
Unreal Engine and IsaacSim. These are advantageous in
multiple aspects since they allow generation and automatic
labelling of ground truth data through full customization
possibilities and with minimum human effort [8]. Indeed,
synthetic data has been used in a variety of tasks such
as human detection [8], [9], pose and shape estimation of
humans [5], and semantic segmentation [10]. However, they
usually lack the visual realism necessary to generalize well
to real-world data if used alone. Thus, a combination of
real and synthetic data is often utilized [8], [9]. Moreover,
these datasets are usually application-specific and hardly
generalize to different scenarios, tasks, or data. For example,
wild animals are widely under-represented in datasets such
as COCO or PASCAL-VOC [11], [12], [13]. Indeed, apart
from a limited number of labelled images and videos of
uncommon animal species such as zebras, hippopotami, and
giraffes, there is also a general lack of variety of scenarios in
which those are recorded. Taking zebras as an example, there
are only 1916 training and 85 validation images containing
at least one instance of them in the COCO dataset. To solve
this problem, we generate a new synthetic dataset using
our GRADE [8] framework, a publicly available animated
zebra model and environments from the Unreal Engine
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marketplace. An example of the generated data can be seen
in Fig. 1 and Fig. 4. We use this data to train a YOLO-based
detector and perform evaluations with an extensive dataset of
zebras captured by drones consisting of 104K images and the
APT-36K [14] dataset. With this, we show that training with
our synthetic data outperforms the baseline models trained
on real-world datasets. In this paper, we take zebras as an
example as it is an endangered species, which is greatly
under-represented in currently available datasets. However,
the proposed method can be generalized to other animals as
well.

The rest of the paper is structured as follows. In Sec. II
we review the current state-of-the-art in simulated worlds
and animal datasets. Our method is described thoroughly in
Sec. III. In there, we give a general overview of the system
and explain how we generated our data. We then present
the results of our experiments in Sec. IV and conclude the
work with Sec. V with comments on known limitations and
possible future work.

II. RELATED WORK

In this section, we focus on two areas: animal-based
datasets, and simulation engines.

Animals. There are not many animals-based datasets
available in the literature [15], [12], [11], especially consid-
ering full 3D-vertices information and precise segmentation.
This is clearly related to the difficulties of collecting and
labelling ground truth data in outdoor scenarios. Various
approaches have been applied to overcome this problem,
ranging from using toy models [6], [7], merging different
datasets [12], or using synthetic data [15], [16]. However,
all of them fall short in some aspects like lack of animal
species variability, size, pose and shape information, skeletal
joints location, or limited capturing settings. For example,
Horse-10 [17] has only horses moving left-to-right. The
authors of the SMAL model [6] do not release the generated
data. The Grévy’s zebra dataset [18] consists only of 900
low-resolution images that do not contain either correct
bounding boxes or labels for all animals. An example of
that is provided in Fig. 2. AnimalPose [11] focuses on a
limited set of animals, in which zebras are not included. The
4DComplete dataset [15], although it contains various animal
animations, it fails on releasing textures or textured FBX files
making it impossible to customize. They do provide rendered
RGB+D images and scene flow but, still, the renderings are
provided without any background information. Other syn-
thetic datasets, such as the one from Mu et al. [19], contain
data which cannot be used to train a successful detector
since they are generated with unrealistic backgrounds and
textures [19]. These also suffer from the low viewpoint
variability and diversity of scenarios, such as the data from
COCO. We must also note that, as shown in Fig. 3, COCO
is not exempt from wrong or imprecise labelled data.

Simulation engines. Gazebo [20] is currently the standard
for robotic simulation. High reliable physics and tight inte-
gration with ROS are its key advantages. However, the lack

Fig. 2: Examples of missing bounding boxes and keypoints from the Grévy’s
zebra [18] dataset. Image ids 869 (left) and 882 (right).

(a) ID: 20164, missing bounding boxes (b) ID: 22149, toy labeled

(c) ID: 32206, wrong bounding box (d) ID: 533961, imprecise bounding box
Fig. 3: Four examples of wrongly labelled zebras from the COCO [2]
dataset.

of visual realism and customization possibility, makes it un-
usable for generating visual data to be used in learning tasks.
Indeed, alternatives emerged in the last years, such as [21],
[22], [23], [24], [25], [26], along with several datasets [5],
[9] that use Unreal Engine, Unity, and Blender for rendering.
The combination of AirSim and Unreal Engine has been
widely explored to generate multiple datasets focused on
specific tasks such as human pose estimation [5] and visual
odometry [27]. Simulators focused on robotics are usually
limited by the type of the environment, e.g. indoor [24], [22],
or the task, e.g. self-driving car [26]. Clearly, generalizing
them to outdoor scenarios with animated animals is not
trivial. GRADE [8] is a recently introduced method to
generate synthetic data built directly upon Isaac Sim. It is
a framework that includes both data generation and general
robotic testing capabilities thanks to its integration with
ROS and the use of ray- and path-tracing. In this work, we
leverage the flexibility of GRADE to generate new synthetic
data of outdoor scenarios with randomly placed zebras.

III. APPROACH

Using the system introduced in our previous work
GRADE [8], we generate an outdoor-environment dataset



focused on zebras. GRADE is our synthetic data generation
framework based on Isaac Sim. Thanks to the flexibility of
GRADE, this approach will be easily applicable also to other
animal species or setups. The details about the GRADE
framework and the simulation management are thoroughly
described in [8]. We proceed here highlighting any major
difference with respect to the already introduced system.

A. Synthetic data

1) Environments: We selected nine commercial and one
freely available environments from the Unreal Engine mar-
ketplace. We used the Unreal Engine Omniverse connector1

to convert them to the USD file format. We list the envi-
ronments with the corresponding shortened URL in Tab. I.
For each environment, we used directly the available demos
and pre-built scenarios. Then, we proceeded to remove the
original sky sphere and fix textures when necessary. The
connector indeed does not yet support full export of the
terrains from Unreal Engine, resulting in a lower level of
detail, e.g. missing 3D grass, some textures, and level of
details. We replaced the textures with some taken from
IsaacSim itself, resembling the color of the grass.

Environment Name URL
Bliss https://bit.ly/3HD3zYP
Forest https://bit.ly/3mYQv8Z
Grasslands https://bit.ly/3HD3zYP
Iceland https://bit.ly/3Ax8zKi
L Terrain https://bit.ly/3V6H7MU
Meadow https://bit.ly/3Hgxk1n
Moorlands https://bit.ly/3oHT1ku
Rural Australia (Free) https://bit.ly/3i5j6Hi
Windmills https://bit.ly/3AvVTDK
Woodland https://bit.ly/3mYQv8Z

TABLE I: Names and shortened URLs of the used environments.

2) Dynamic assets: We use a freely available zebra model
from SketchFab [28]. This model consists of 34 different in-
place animation sequences, i.e. without root translation or
rotation movements, for a total of 888 animation frames.
We converted each animation sequence to the USD format
using Blender and its Omniverse connector. Then, we post-
processed the sequence to obtain per-frame vertices position
and skeletal information. This allows us, for every generated
frame, to have corresponding ground truth information about
these two characteristics. The vertices are used to compute
oriented bounding boxes that are then employed for the
placement procedure.

3) Placement of zebras: Zebra placement is based on
an ad-hoc procedure that is repeated every time a frame
is generated. For every environment we select a specific
mesh as ‘terrain’, which represents the area in which we
will then place the zebras. The placement consists then of
four main steps: i) selecting a random rectangular area of
the terrain, ii) randomly selecting a set of zebras, iii) for
each zebra select frame of its animation sequence, a scaling
factor and a global orientation of the zebra, iv) place the

1https://bit.ly/3X82sph

zebra in the rectangular area considering the bounding-box
occupancy. The sides of the rectangle are randomly selected
to be between 40 and 120 meters, while the scaling factor
ranges between 40% and 100% and allows us to obtain a
higher degree of variability. The placement is an iterative
procedure that considers one zebra model after the other. Any
model that cannot be placed following a detected collision is
removed from the simulation. The final results depend mostly
on the resolution of the terrain mesh for both collisions
between meshes and contact of the zebras with the ground.
In general, we noted that collisions are rare and that contacts
with the ground are good. Note that, as opposed to [8], we
do not consider the full animation sequence since we lack
any root translation information.

4) Data collection methodologies: Contrary to what is
done for indoor environments in [8], here we focus on image
generation rather than video sequences. We also perform a
series of randomization for each captured frame, i.e. the i)
time of day, ii) number of zebras in the environment, iii)
their scaling factor, iv) their specific animation frame, and
the v) placement of three cameras that will record the scene.
Specifically, given any environment, we set up three aerial
cameras and randomly pre-load 250 zebras at the beginning
of each experiment. We then uniformly select the number of
zebras that will be placed in the next frame. This number
is set to be between 2 and 250. Note that this is not the
number that will appear in each frame, nor is the final number
of zebras that are actually placed. As explained above, the
placement strategy may remove some of the zebras and
the camera may not observe all the zebras given a point
of view. Once the placement happened, we randomize the
location of the cameras and the time of days three times.
The time of day will be 90% of the time between 5 am
and 8 pm, which results in good lighting conditions given
our current settings, and 10% of the time in the remaining
hours, resulting in dusk-to-night light settings. This further
randomizes the appearances of both the generated frames
and the shadows. Cameras are placed using the average
location of the zebras as a pivot point. For the placement of
the cameras, we distinguish between two slightly different
image-generation procedures: one more general and one
more focused on capturing zebras from a nearer viewpoint.
We first describe the former and then identify the minor
modifications that we applied to the latter. From the pivot
point, we randomize the distance in the x-y plane and the
height of the camera. The height is set to be between 5 and
20 meters more than the average of the zebras, while the x
and y are set to be between -/+ 100 meters. Once the position
is fixed, we can compute and randomize roll, pitch, and yaw.
Roll is set to be within [−10,10] degrees, yaw is set to be
the ray that connects the camera and the pivot point with
an additional random [−30,30] degrees. Pitch is computed
as θ = atan2(pivotz − camz,d(pivot,camera))+15 degrees,
where d(pivot,camera) is the distance in the x, y plane.
The modifications applied to this methodology during the
second image-generation procedure are as follows: the x
and y positions are set to be within 5 meters of the virtual
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Fig. 4: An example of the generated data following the pipeline described in Sec. III. On the first row, from the left, we can see the rendered RGB image,
depth data, 2D bounding boxes, and semantic instances. On the second row, from the left, we can see 3D-oriented bounding boxes, the vertices of each
mesh drawed over a black background, and the second and third views of the same scene as taken from the other drones. Best viewed in color.

bounding box containing all zebras, the yaw has an additional
[−15,15] degrees component instead of the [−30,30]. This
results in images that are closer to the zebras than the ones
obtained from the former camera placement strategy.

For each environment, we randomly place the zebras 200
times, resulting in 600 frames per experiment per camera, i.e.
1.8K frames in total. After the generation process is complete
for all ten environments, this totals to 18K frames captured
with the first camera placement strategy, and 18K with the
camera set to be more nearby, totalling 36K frames. For
each frame, we save the pose of the cameras, zebra skeletal
pose and meshes vertices, ground truth depth and instance
segmentation.

B. Real-world data

We performed several data collection experiments in a
controlled scenario within the Wilhlema Zoo in Stuttgart
(DE). An example of the collected data can be found in
Fig. 5. We used two manually flown DJI Mavic 2 Pro drones,
recording images at 29.97 fps at a resolution of 3840×2160,
and three GoPro Hero8, also with a resolution of 3840×2160
at 59.94 fps. None of the GoPros had fixed locations between
experiments. The data has been manually synchronized by
using a recorded light signal visible by all cameras at the
same time. We then extracted one frame every five seconds
from all the videos. Out of these, 905 images were ran-
domly selected and annotated manually and precisely. These
annotations were then used to train an SSD multibox [29]
detector, which, with Smarter-Labelme [30], allowed us to
obtain bounding boxes on our video sequences with ease. Out
of all the data available, we finally selected three collections
during which the zebras were visible by both drones. The
boxes on those sequences were then manually refined in
a final step. This procedure thus resulted in 905 precisely
annotated images, and 104K frames annotated with [30].
Within this work, we release the data used during our training
experiments, i.e. the 905 precisely annotated images and 200
automatically labelled ones from one of the experiments (see
Sec. IV for details).

IV. EXPERIMENT AND EVALUATIONS

Here we seek to demonstrate that the synthetic data
generated by our method can be used effectively for a vision-
based task which is highly related to image features and
context, such as the detection of zebras in outdoor wild
environments from an aerial point of view. Our hypothesis is
that, by training a model using only synthetic data acquired in
a realistic simulation environment, we can achieve detection
performance on real images comparable to a model trained
on a manually and very-precisely labelled set of real im-
ages. Our goal is to prove that synthetically generated data
alone can be used to train a network capable of detecting
zebras with high accuracy in real-world images. To that
end, we decided to perform various tests on YOLOv5s. We
train the networks from scratch and with mixed datasets to
test the performance and provide a complete overview. All
the training runs are made from scratch with the default
hyperparameters and for the standard 300 epochs. We do
not introduce any additional data augmentation technique
different from the one applied by default by the YOLOv5
code. This consists of some randomization in the scale,
horizontal flip, translation and HSV colour space factors. We
do not modify these values to have a fairer comparison across
the models that would not require parameter grid searches
or other steps when compared to the baseline pre-trained
model. We save the best model, as evaluated on the specific
validation set, and compare it over multiple datasets. We
evaluate the performance with the COCO standard metric
(mAP@[.5, .95], AP in this work) and the PASCAL VOC’s
metric (mAP@.5, AP50 in this work). We also report the
average and weighted average of these two metrics. We
weigh based on the cardinality of each one of the evaluated
datasets. With these comparisons, we demonstrate that, with
our synthetic data, we can successfully capture real-world
features. This, while also obtaining trained models which
show, in general, improved performance when compared to
the pre-trained ones.

Synthetic Full dataset (SF) is the dataset containing all
the 36K synthetically generated images. These are then



(a) R1 (b) R2

(c) R3 (d) RP

Fig. 5: An example of our real-world collected images used for testing. Three aerial and one ‘ground-level’ views. Best viewed in color.

randomly shuffled and split into 80/20 train/validation sets.
Synthetic Closeby (SC) is the synthetic data generated only
by the second strategy, as described in Sec. III-A.4, i.e.
18K images for which the camera is within 5 meters of the
bounding box containing all the zebras. This data is also
divided randomly with an 80/20 ratio. With COCO we refer
to the images of the COCO dataset [2] which contains zebras,
i.e. 1916 training and 85 validation examples. Due to the
small size of the validation set of the COCO dataset, we
do not perform any training on this data alone. With APT-
36K we indicate the set of images from the APT-36K [14]
dataset which contains zebras, i.e. 1.2K samples. We then
have, R1, R2, and R3 which are three sets of real-world
data which is not precisely labelled, as described in Sec. III-
B. To distinguish between which drone captured the given
sequence, we use the suffixes D1 and D2. R1 consists of
19.7K images, R2 of 23.4K, and R3 of 8.8K, for each drone.
Finally, we use RP to indicate the set of the 905 real-world
images precisely labelled by us, sampled from representative
images from the previous Rx datasets and additional images
captured with the GoPros as described in Sec. III-B. Of them,
720 are randomly used in training and 185 for validation.
An example of the bounding boxes of our real-world data is
provided in Fig. 5. We also provide two zoomed-in examples
of imprecise labels in Fig. 6. Note that also other datasets,
e.g. COCO (see Fig. 3), present such approximations.

Our baseline for comparison consists of the network pre-
trained on the full COCO dataset. We perform some training

Dataset Description Train imgs. Val imgs.
SF Our full synthetic data 29K 7K

SC A subset of our synthetic data
focused on camera poses closer to the zebras 14.5K 3.5K

R1 Aerial capture experiment 1 — 19.7K
R2 Aerial capture experiment 2 — 23.4K
R3 Aerial capture experiment 3 — 8.8K
R3100 100×2 images randomly chosen from R3 100 100
RP Preciselly labelled images from R1/2/3 and GoPros 720 185
COCO COCO-zebras 1916 85
Rx D1,2 Either 1st or 2nd drone capturing during experiment Rx
∗-1920 Same dataset but using 1920 image size during training
∗ + ⋄ Trained by merging ∗ and ⋄ corresponding train and validation sets

TABLE II: Zebras datasets legend and training/validation sizes

Fig. 6: Two zoomed-in examples of imprecisely labelled data. The bounding
boxes can either be slightly too loose or too tight on the zebras.

tests on both the default 640 × 640 image size and the
increased 1920 × 1920, identified in our table with the ‘-
1920’ suffix. Once established that the bigger image size
yields better results, we trained the network with mixed
datasets. These are i) SC+COCO-1920, which combines
SC training and validation sets with images from COCO’s
corresponding splits, ii) SC+COCO+R3100-1920, which adds
100 train and 100 validation images randomly sampled from
R3, and iii) RP+COCO-1920, which merges RP and COCO



APT-36K [14] R1 D1 R1 D2 R2 D1 R2 D2 R3 D1 R3 D2 RP (validation) Weigthed avg. Avg.
Training Dataset mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP
SF 0.072 0.029 0.770 0.488 0.756 0.490 0.224 0.130 0.597 0.393 0.142 0.092 0.203 0.127 0.104 0.074 0.498 0.318 0.359 0.228
SF-1920 0.103 0.055 0.853 0.568 0.958 0.646 0.873 0.540 0.957 0.616 0.608 0.443 0.651 0.484 0.287 0.191 0.853 0.563 0.661 0.443
SC 0.121 0.046 0.714 0.455 0.830 0.529 0.147 0.084 0.513 0.316 0.156 0.097 0.375 0.202 0.092 0.061 0.482 0.299 0.369 0.224
SC-1920 0.150 0.053 0.907 0.605 0.971 0.664 0.939 0.593 0.968 0.652 0.649 0.476 0.819 0.580 0.331 0.228 0.901 0.604 0.717 0.481
RP 0.260 0.092 0.865 0.487 0.935 0.550 0.808 0.479 0.946 0.593 0.772 0.380 0.922 0.548 0.805 0.453 0.873 0.512 0.789 0.448
RP-1920 0.161 0.066 0.937 0.615 0.980 0.663 0.989 0.653 0.982 0.666 0.801 0.532 0.986 0.680 0.914 0.636 0.950 0.636 0.844 0.564
SC+COCO-1920 0.709 0.386 0.943 0.624 0.976 0.676 0.932 0.599 0.977 0.659 0.637 0.481 0.867 0.635 0.350 0.253 0.918 0.621 0.799 0.539
RP+COCO-1920 0.837 0.526 0.967 0.639 0.984 0.681 0.980 0.656 0.968 0.684 0.768 0.493 0.981 0.674 0.911 0.626 0.956 0.650 0.925 0.622
SC+COCO+R3100-1920 0.704 0.378 0.975 0.655 0.994 0.707 0.963 0.636 0.991 0.691 0.986 0.733 0.961 0.708 0.432 0.308 0.975 0.676 0.878 0.602
SC+COCO+RP-1920 0.705 0.383 0.988 0.688 0.994 0.714 0.988 0.652 0.990 0.709 0.869 0.614 0.988 0.756 0.921 0.639 0.976 0.685 0.930 0.644
Pretrained-COCO 0.879 0.566 0.576 0.376 0.529 0.354 0.421 0.274 0.379 0.258 0.331 0.215 0.551 0.390 0.173 0.123 0.469 0.312 0.480 0.320

TABLE III: Results of the evaluations of the trained models. We report mAP50 and mAP for each dataset as well as both the average and weighted
average of these metrics. We divide between models trained on mixed datasets, vanilla ones, and the model pre-trained with COCO. In bold the best results.
We underline the best model not using the RP dataset during training in the corresponding validation column.

sets. Note that all models trained with RP have been exposed
to representing data coming from Rx Dx, giving them an
advantage in these evaluations. The full description of the
datasets, including the training a validation set sizes, is
reported in II.

All our results are reported in Tab. III. Additionally,
we present randomly sampled images from the COCO,
APT-36K, R2, and RP datasets for the main models in Fig. 7.
Now, we proceed to analyse the results that we report in
the table. First, we can notice that the models trained on
the bigger image size show higher performances across all
datasets and metrics. This is true both for synthetic, i.e. SF
and SF-1920, SC and SC-1920, and the real data, i.e. RP
and RP-1920. The only exception is the model trained with
RP which in the APT-36K performs ∼ 10% better than RP-
1920. Overall, the model pre-trained on the COCO dataset
works well only on the APT-36K dataset with a mAP50 of
∼ 88%, further showing the low variability of these datasets
and the incapability to generalize to both different points of
view or scenarios. Indeed, the YOLO model pre-trained on
COCO achieves at most ∼ 58% accuracy on our data, with
an overall weighted average of ∼ 47%. The fact that the
COCO data is representative of the APT-36K dataset can
be evinced also by the performance obtained by the model
trained with RP+COCO-1920 dataset. Considering now the
synthetic data, i.e. SF-1920 and SC-1920, we can see that
the best model overall is SC-1920 which achieves ∼ 5%
higher mAP and mAP50 across all tests, with a peak of
∼ 15% on the R3 dataset. This is probably related to the
first of the two generation procedures, which resulted in long
distances between the zebras and the cameras (see Sec. III-
A.1). Our real data instead comprises mostly zebras that are
reasonably nearby the drone as seen from the pictures in
Fig. 5 and Fig. 7 in the third and fourth rows. The synthetic
models may perform poorly on RP validation set and APT-
36K due to the generation process. These sets have diverse
images, including zebras near the camera in a side view or
hidden behind bushes and trees, e.g. second and fourth row in
Fig. 7. Moreover, by comparing SC-1920 with the model pre-
trained on COCO, we can see how, across all data excluding
APT-36K, we obtain higher performances on both metrics of
considerable amounts, ranging between ∼ 20% and ∼ 45%.

We can now compare the differences between the models
trained on synthetic data and real data. For this, we will focus
on comparing SC-1920 and RP-1920. The weighted average
gap is only 4.9% in the mAP50 and 3.2% on the mAP. The

big difference in the simple average is mostly linked to the
results obtained in the validation set of RP, which was to
be expected. Indeed, we can notice how the model trained
on synthetic data performs considerably worse in the RP
dataset, with a ∼ 58% reduction in mAP50 and ∼ 41% on
mAP. A similar result is depicted when we consider tests on
the R3 Dx data, with reductions of ∼ 16% and ∼ 6− 10%
for the two considered metrics. Nonetheless, with all other
datasets, the model trained on synthetic data is comparable to
the one trained on real-world captured images of just 1−5%.
Recall that the RP model was trained on the RP dataset itself,
composed of images from the Rx experiments and additional
images from point-of-views not generated by our procedure.
This clearly demonstrates that, on the considered datasets,
the model trained solely with the synthetic data generated
using the pipeline described above is perfectly capable of
detecting zebras by achieving similar performance on all
but two datasets when compared with RP, and significantly
overcoming the model pre-trained on COCO in all but APT-
36K dataset.

Finally, we consider the mixed models. Unsurprisingly, the
one based only on real data, i.e. RP+COCO-1920, performs
well on all datasets. The slight reduction in performance
in the R2 and R3 datasets is well compensated by the
generalization in the APT-36K. This is also the model with
the highest average mAP and mAP50. We believe that this
is mostly linked to how the dataset was built, with RP that
contains data from all Rx experiments combined with the
1916 training images of COCO. Despite that, it is interesting
to notice how the models trained with a mixture of synthetic
and real data are capable of generalizing across all the
datasets as well. Specifically, combining SC and COCO,
i.e. SC+COCO-1920, resulted practically in a significant
improvement of the performance solely in the APT-36K
dataset. Minor improvements are noticeable in the other
datasets as well, If to this we add 100 samples from R3,
i.e. SC+COCO+R3100-1920, we then achieve considerable
improvements in the performance w.r.t. SC-1920 on all
datasets.

The most noticeable are the ones on APT-36K, of around
55%, and on the RP dataset, of around 10%. The improve-
ment in the R3 is to be expected since we mixed 100
images from that set. Nonetheless, it is remarkable that just
a small change in the data brought a ∼ 34% increase in the
mAP for this validation test. The SC+COCO+R3100-1920
is the model with the highest weighted average precisions



(a) Ground-truth (b) COCO (c) RP-1920 (d) SC-1920 (e) SC+COCO+R3100-1920

Fig. 7: Sampled detections. We show in column (a) the ground truth and then the results obtained from (b) the default model (pre-trained on COCO), and
the ones trained on (c) RP-1920, (d) SC-1920, and (e) SC+COCO+R3100-1920. The images are randomly taken from the COCO (first row), APT-36K,
R2, and RP (last row) datasets. Best viewed in color and zoomed-in.

and is the second best when considering the average mAP
and mAP50. We believe that this model would be further
improved by having more samples from the COCO dataset
in the validation set or, overall, a better-balanced set of
samples. Considering that SC is made of 18K images, and
both COCO and R3100 make up for 2K training images
and only 300 validation ones, we can expect an ‘overfit’ of
the final selected model towards scenes which are strongly
represented by the synthetic images. Also, in this case, the
significant difference in the average mAP and mAP50 is
mostly linked to the gap in the results in the RP validation
set. For completeness, we also trained the SC+COCO+RP-
1920 model, i.e. using the closeby synthetic data, the coco
data, and the small set of real data which was precisely
labelled. As expected, this is the model which performs best
in the majority of the tests, excluding the APT-36K dataset,
where the pretrained model performs best, and in R3 D1.
However, we must note that RP contains data from all R1, R2
and R3 datasets in both the training and validation sets. Thus,
the results in these case are clearly driven by this information.
What is interesting to notice is that all mixed models perform
similarly in the APT-36K dataset, with ∼ 70% of mAP50
and ∼ 38% mAP, further indicating that a better balancing
in the validation set might further boost the performance of

these models. Alternatively, a more representative generation
strategy could be employed, by including camera locations
relative to the zebras more similar to the ones that we can find
in the APT-36K or in the COCO dataset. The results suggest
that such an approach would be effective as well, perhaps in
conjunction with a minimal amount of annotated real data.
Finally, considering that zebra stripes are notoriously specific
to the individual, it is interesting to notice how, despite the
fact we use the same texture for all our generated zebras,
we are still able to generalize to different individuals well.
This suggests that the network does not focus and learn
specifically the pattern it is shown, but rather the general
appearance of the animal itself.

V. CONCLUSIONS

In this work, we first demonstrated that the currently
available datasets do not generalize well to the task of
detecting zebras captured from an aerial point of view. To
solve this, we generated a large-scale synthetic dataset of
zebras by using GRADE, a state-of-the-art framework for
synthetic data generation. The dataset, which is the first
of its kind both in terms of size and visual realism, has
been released for the benefit of the community. By using
that, we performed extensive evaluations by training and
testing YOLO with a wide range of combinations of real



and synthetic data. This provides strong evidence that the
visual realism of the data generated is very high, because
our models showed performances which are as good as the
one obtained by a detector trained on real-world labelled
data alone. Using synthetic information we can surpass the
process of collecting and labelling data in controlled scenar-
ios, thus avoiding the probable introduction of errors. Further
testing by using combined synthetic and a small amount of
real data showed that we can successfully generalize to a
wide variety of scenarios. A known limitation that we need
to address is the realism of the adopted environments and
more precise placement strategies, which we believe could
solve both the generalization problem and the usage of high-
resolution images by the network. Future works include the
generation of videos instead of just static images, testing with
different network architectures like SSD [29] or RCNN [31],
and using the synthetic data for different tasks such as
keypoints detection.
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