
ar
X

iv
:2

30
5.

04
28

6v
2 

 [
cs

.R
O

] 
 2

6 
M

ay
 2

02
3

2023 IEEE International Conference on Robotics and Automation (ICRA)

Workshop on Active Methods in Autonomous Navigation, URL

29 May - 2 June, 2023, London, UK

Simulation of Dynamic Environments for SLAM

Elia Bonetto∗,† Student Member, IEEE, Chenghao Xu‡,∗, and Aamir Ahmad†,∗ Senior Member, IEEE

Abstract— Simulation engines are widely adopted in robotics.
However, they lack either full simulation control, ROS inte-
gration, realistic physics, or photorealism. Recently, synthetic
data generation and realistic rendering has advanced tasks like
target tracking and human pose estimation. However, when
focusing on vision applications, there is usually a lack of in-
formation like sensor measurements or time continuity. On the
other hand, simulations for most robotics tasks are performed
in (semi)static environments, with specific sensors and low
visual fidelity. To solve this, we introduced in our previous
work a fully customizable framework for generating realistic
animated dynamic environments (GRADE) [1]. We use GRADE
to generate an indoor dynamic environment dataset and then
compare multiple SLAM algorithms on different sequences.
By doing that, we show how current research over-relies on
known benchmarks, failing to generalize. Our tests with refined
YOLO and Mask R-CNN models provide further evidence
that additional research in dynamic SLAM is necessary. The
code, results, and generated data are provided as open-source
at https://eliabntt.github.io/grade-rr.

I. INTRODUCTION

Intelligent robots should be able to perceive and under-

stand the world around them to be autonomous and able

to interact with it. However, especially when addressing

dynamic environments, it is not possible to experiment with

them directly in the real world due to the inherent risk of

damaging or hurting people and animals. Therefore, it is

crucial to verify them beforehand in simulation.

Gazebo [2] is by far the most popular framework for sim-

ulating robots due to its simplicity, reliable physics engine,

and tight integration with ROS [3]. Nevertheless, it is not

photorealistic, there is a limited variety of assets/worlds that

can be loaded without considerable effort, and the simulation

engine cannot be fully controlled. For these reasons, various

alternatives emerged, e.g. TartanAir [4], AirSim [5], AIHabi-

tat [6], BenchBot [7], and iGibson [8]. However, they all

lack either full control of the simulation, ROS integration,

realistic physics and appearance, or SIL/HIL capabilities.

Additionally, some simulate environments with only rigid

objects [2], [6] or do not include dynamic assets since this

would pose various challenges such as their placement, their

management, and their generation. Then, relying on pre-

recorded robotic datasets is typically non-trivial due to dif-

ferences in the form factors of the robots (e.g. placement of

∗Max Planck Institute for Intelligent Systems, Tübingen, Germany.
firstname.lastname@tuebingen.mpg.de

†Institute of Flight Mechanics and Con-
trols, University of Stuttgart, Stuttgart, Germany.
firstname.lastname@ifr.uni-stuttgart.de

‡Faculty of Mechanical, Maritime and Materials Engineering, Department
of Cognitive Robotics, Delft University of Technology, Delft, Netherlands.

The authors thank the International Max Planck Research School for
Intelligent Systems (IMPRS-IS) for supporting Elia Bonetto.

the sensors, stiffness of the joints), in the sensor settings (e.g.

focal length, FPS, IMU frequency) or in the noise models.

Moreover, using a dataset is a passive action which cannot be

used when testing active or autonomous methods. For these

reasons, although (non-)rigid moving objects are common in

real life, a lot of research in robotics still assumes a (semi-

)static world. This greatly hinders efforts towards various

research topics such as SLAM and navigation in dynamic

environments, target tracking, and visual robot learning, thus

limiting autonomy in robotics.

For these reasons, we developed a framework for

Generating Realistic Animated Dynamic Environments —

GRADE [1]. GRADE is a flexible, fully controllable, cus-

tomizable, photorealistic, ROS-integrated framework to sim-

ulate and advance robotics research.

To demonstrate the limitations of current state-of-the-art

dynamic SLAM methods, we used GRADE to: i) gener-

ate an indoor dynamic environment dataset by using only

freely available assets and FUEL [9], ii) test popular indoor

dynamic SLAM algorithms with some generated sequences

to evaluate those and benchmark our work. While testing

static sequences demonstrates that the data is usable by

said frameworks, evaluating the dynamic ones proves that

these methods cannot generalize to data different from the

currently used benchmark datasets. We then experiment with

different trained models of YOLOv5 [10] and Mask R-

CNN [11] and show that not always the best-performing one

in terms of precision corresponds to the best ATE result. All

of this while focusing on a metric that is often overlooked by

the community: the amount of time the SLAM framework

is capable of tracking the trajectory, which is an essential

indication of the robustness of the considered method and

helps to create a contextualization of the results.

II. RELATED WORK

Historically, one of the core robotics problems is map-

ping an unknown environment. A lot of the current SLAM

research still focuses on static environments [12], despite

the belief of this being a solved problem, and how to

actively explore them [13]. Lately, visual SLAM has gained

traction with respect to other methods, with RTABMap [14]

and ORB-SLAM [15] which are just two among all the

possible frameworks that can be used to perform it. Most

of the current perception-based methods are developed in

static environments and are expected to fail or degrade in

dynamic ones, making them hard to be used in real-world

everyday scenarios. Indeed, tracking the camera trajectory of

the robot in dynamic environments is a notoriously difficult

problem [16]. Nonetheless, research in SLAM for dynamic

http://arxiv.org/abs/2305.04286v2
https://robotics.pme.duth.gr/workshop_active2/?page_id=490
https://eliabntt.github.io/grade-rr


worlds has still limited (although increasing) traction, mainly

due to difficulties in simulating data and the inherent danger

of directly testing an autonomous method in the real world.

Many methods addressing dynamic worlds rely on segmenta-

tion or optical clues to filter out features of dynamic subjects,

and most have no real-time capabilities. Among those, one

of the most successful is DynaSLAM [17], which uses Mask

R-CNN [11] and multi-view geometry. DynamicVINS [18]

employs YOLOv5 [10] to mask the features belonging to dy-

namic objects. StaticFusion [19] instead relies on pointclouds

clustering segmentation to work. Learning-based methods,

such as TartanVO [20], propose to learn visual odometry on

synthetic and real data to reconstruct the robot trajectory.

However, the limited availability of testing sequences and

environments makes those fail when applied to different

situations or environments, as shown also in [20].

III. OWN APPROACH AND CONTRIBUTIONS

As explained thoroughly in GRADE [1], we used our

framework to generate a dataset of indoor dynamic sequences

autonomously recorded using FUEL [9]. With these evalua-

tions, we want to demonstrate that we can use the data gen-

erated in robotic applications by testing state-of-the-art dy-

namic SLAM methods, and highlight the current limitations

of such frameworks. We selected two static SLAM methods,

RTABMap [14] and ORB-SLAMv2 [15], to demonstrate that

the visual information is not misleading by itself when testing

static sequences and that the data is usable for the visual

odometry task. Then we picked DynaSLAM, which uses

Mask R-CNN to segment dynamic content, DynamicVINS,

which instead uses YOLO, StaticFusion, i.e. a non-learning

based method that performs clustering on the pointclouds,

and TartanVO which, although it is not a proper SLAM

system, is a learned visual odometry method developed

specifically for challenging scenarios. DynamicVINS was

tested in both its VO and VIO variations and with a minor

modification to account for possible failures [1].

We used the generated data to train both YOLOv5 and

Mask R-CNN, the networks used in [18] and [17]. We used

the synthetic data both to train them from scratch and as

pre-training step. Using the resulting network weights we

evaluate the corresponding SLAM method, i.e. DynaSLAM

with Mask R-CNN and Dynamic VINS with YOLOv5, on

fr3/walking sequences showing contrasting results.

A. SLAM

We select four RGBD sequences from the GRADE

dataset [1], in which the robot stays horizontal (H) and four

in which the robot is free to move. Each sequence are 60

seconds long marked as static (S), dynamic without flying

objects (D), with flying objects (F) and with occlusions of the

camera (WO). We perform evaluations of both groundtruth

data and with added noise. Depth data was limited both to 3.5

meters, which is a reasonable value when using for example

a RealSense D435i, and 5 meters. The added noise to the

depth values is based on the model described in [21]. To the

RGB data we add random rolling shutter noise (µ = 0.015,

σ = 0.006), and blur following [22]. The IMU drift and noise

parameters are taken from [23]. Image data was recorded at

30 Hz, IMU at 240 Hz, and groundtruth pose at 60 Hz.

As evaluation metrics, we utilize the ATE RMSE and the

amount of time the framework can successfully track the

trajectory. The latter is a critical evaluation quantity to be

considered. It helps the reader put ATE values in perspective

whenever the framework fails due to some featureless frames

or occlusions. For consistency, when evaluating Dynam-

icVINS, we considered only experiments in which the first

initialization was successful. We first analyze the results

with the depth limited at 3.5 meters. We report them on

Tab. IV and Tab. III. One can notice that all the methods

perform poorly in the majority of the sequences. Focusing

on noisy experiments, which are more related to reality,

we can see that with static sequences most of the methods

perform well, except TartanVO and StaticFusion which fail.

Furthermore, one should not be misled by the good ATE

results of DynaSLAM on dynamic sequences. Indeed, in 5

out of 8 experiments the camera lost track of the trajectory

for at least ∼ 27 seconds (three times more than 49 s) and

performing sometimes worse than the ORB-SLAMv2, i.e.

its underlying mapping framework. In general, we can infer

that, despite these methods showing compelling results when

tested with other datasets, they exhibit several limitations

when tested on different data. The fact that the methods

perform well with the static sequences demonstrates how it is

not a problem of the data used, but it is a problem inherent

to the dynamic nature of the environment or the presence

of featureless frames. Overall, DynamicVINS seems to be

the best-performing method when considering both ATE and

the time missing from each experiment. However, despite the

help of the IMU, in DH sequence the ATE is over 1.6 meters

for just a 60 s sequence. By comparing the tests performed on

groundtruth and noisy data one can see that in the majority

of the experiments the noisy ones perform slightly worse.

However, in general, the results are similar and one can

draw the same overall conclusions. Finally, we can compare

corresponding sequences with the depth limited to 3.5 and 5

meters using tables Tab. VI and Tab. IV for the ground truth

data, and Tab. V and Tab. V for the noisy one. As expected,

TartanVO yields equal results, by being a method that works

only on visual data. RTABMap shows performance which are

greatly degraded in all sequences, in both missing time and

ATE. ORB-SLAM and DynaSLAM(VIO) are, for the most

part, comparable. We can also notice how DynaSLAM(VO)

shows worse performance, indicating the reliance of the VIO

counterpart on the IMU. StaticFusion, as shown also in other

works like [24], shows degrading performance with increased

depth data. DynaSLAM seems overall the most stable, except

for the D-noisy sequence which shows high variability.

B. Network models variations

We will consider here four models: S-COCO, S-GRADE,

S-GRADE+S-COCO and S-GRADE+COCO. These corre-

spond to different training strategies with a reduced coco

dataset (S-COCO), a reduced GRADE dataset (S-GRADE),



COCO, and combination of pretraining and finetuning (S-

GRADE+[S-COCO, COCO]). We refer the reader to [1] for

additional insights. In general, the best performing models

for both YOLO and Mask RCNN when tested on the TUM

RGBD labelled data, were obtained with S-GRADE+COCO,

followed by COCO (BASELINE in [1]), S-GRADE+S-

COCO, S-GRADE, S-COCO.

1) YOLOv5 and Dynamic VINS: We utilize them with

Dynamic VINS to evaluate their performance with the TUM

fr3/walking sequences. The results, presented in Tab. I, are

averaged among three runs. The baseline values are not the

ones from [18] since we were unable to reproduce them for

the rpy and static sequences. One can easily notice how the

models pre-trained on the synthetic data consistently obtain

results which are at par or better than the baseline model.

Surprisingly, using the model trained on S-GRADE, despite

showing the lowest detection performance among the models

considered in this test, is the best performing one in two

sequences, remarking the fact that more research is necessary

on dynamic SLAM. In this case, between the tests, there was

no difference in the percentage amount of the successfully

tracked trajectory.

Model S-COCO S-GRADE
S-GRADE
+ S-COCO

S-GRADE
+ COCO

Baseline % Traj.

w. half 0.064 0.048 0.059 0.066 0.069 87.81
w. xyz 0.052 0.050 0.049 0.045 0.037 89.37
w. rpy 0.120 0.224 0.116 0.116 0.114 87.11
w. stat 0.302 0.199 0.216 0.203 0.218 90.18

TABLE I: ATE [m] and percentage of the tracked trajectory percentage of
Dynamic VINS using our models on the fr3/walking sequences. In bold the
best one, in italics the second best.

2) Mask R-CNN and DynaSLAM: Also in this case, we

evaluate the performance of the trained model with the TUM

fr3/walking sequences using DynaSLAM. Each result is the

average between three experiments, and all are shown in

Tab. II. Also in this case, we computed the baseline again,

obtaining results which are close to the one reported in [17]

with the exception of the walking rpy sequence. However,

this was necessary for us to be able to report the percentage

amount of the tracked trajectory. We used the trained models

that showed the best performance in the segmentation task.

Here, thanks to the offline nature of the method and the

optimization procedure employed, ATE errors are much

lower than the ones obtained from Dynamic VINS (see

Tab. I). By analysing the results and taking into consideration

both the ATE and the amount of the tracked trajectory, one

can see that in all cases there is a benefit to using a detection

network which was pre-trained on synthetic data. However, a

clear pattern cannot be derived yet, despite both S-GRADE

+ S-COCO and S-GRADE + COCO showing compelling

results.

IV. CONCLUSIONS

In this work, by using data from [1], we have shown how

all the tested models methods fail, one way or another, to suc-

cessfully generalize to our dynamic sequences. However, the

majority of them are capable of tracking static trajectories,

signifying that the issue is not on the realism or the quality of

the data itself but lies possibly on the parameter tuning and,

S-COCO S-GRADE
S-GRADE
+ S-COCO

S-GRADE
+ COCO

Baseline

w. half
0.031 0.034 0.032 0.028 0.030

79.24 89.37 78.65 89.34 89.53

w. xyz
0.017 0.017 0.016 0.016 0.016
91.43 86.35 91.85 83.93 83.90

w. rpy
0.034 0.104 0.060 0.037 0.040
72.99 80.25 67.82 77.79 75.68

w. stat
0.010 0.007 0.007 0.008 0.007

91.89 91.61 91.89 77.77 89.06

TABLE II: ATE [m] and percentage of the tracked trajectory of DynaSLAM
using our models on the fr3/walking sequences. In bold the best, in italics

the second best.

more in general, on the method themselves. We have also

shown that the models trained on our synthetic data can bring

a performance improvement when a model trained with that

is used with the corresponding SLAM framework. However,

this also indicates that more research in this regard is needed

since there are instances in which networks trained only on

either S-COCO and S-GRADE perform the best, despite

these being the worst-performing models in the detection

and segmentation tasks.

REFERENCES

[1] E. Bonetto, C. Xu, and A. Ahmad, “GRADE: Generating realistic
animated dynamic environments for robotics research,” arXiv preprint

arXiv:2303.04466, 2023.

[2] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.

No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[3] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[4] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor,
and S. Scherer, “Tartanair: A dataset to push the limits of visual slam,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2020.

[5] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-
fidelity visual and physical simulation for autonomous vehicles,”
in Field and Service Robotics, 2017. [Online]. Available:
https://arxiv.org/abs/1705.05065

[6] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao,
E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh,
and D. Batra, “Habitat: A Platform for Embodied AI Research,” in
Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), 2019.

[7] B. Talbot, D. Hall, H. Zhang, S. R. Bista, R. Smith, F. Dayoub, and
N. Sünderhauf, “Benchbot: Evaluating robotics research in photoreal-
istic 3d simulation and on real robots,” 2020.

[8] B. Shen, F. Xia, C. Li, R. Martı́n-Martı́n, L. Fan, G. Wang, C. Pérez-
D’Arpino, S. Buch, S. Srivastava, L. P. Tchapmi, M. E. Tchapmi,
K. Vainio, J. Wong, L. Fei-Fei, and S. Savarese, “igibson 1.0: a
simulation environment for interactive tasks in large realistic scenes,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2021, p. accepted.

[9] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration
using incremental frontier structure and hierarchical planning,” IEEE

Robotics and Automation Letters, vol. 6, no. 2, pp. 779–786, 2021.

[10] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012,
Y. Kwon, K. Michael, TaoXie, J. Fang, imyhxy, Lorna, Z. Yifu,
C. Wong, A. V, D. Montes, Z. Wang, C. Fati, J. Nadar, Laughing,
UnglvKitDe, V. Sonck, tkianai, yxNONG, P. Skalski, A. Hogan,
D. Nair, M. Strobel, and M. Jain, “ultralytics/yolov5: v7.0 - YOLOv5
SOTA Realtime Instance Segmentation,” Nov. 2022. [Online].
Available: https://doi.org/10.5281/zenodo.7347926

[11] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE International Conference on Computer Vision

(ICCV), Oct 2017.

https://arxiv.org/abs/1705.05065
https://doi.org/10.5281/zenodo.7347926


Dynamic
VINS (VIO)

Dynamic
VINS (VO)

TartanVO StaticFusion DynaSLAM ORB-SLAMv2 RTABMap

Sequence ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

FH 0.155 1.03 0.367 0.43 0.582 0.00 0.854 0.00 0.309 1.50 0.386 0.00 0.097 1.97
F 0.886 1.27 1.857 1.37 4.223 0.00 3.992 0.00 0.178 49.67 0.144 44.30 0.125 47.03
DH 1.681 0.43 1.183 3.30 1.234 0.00 1.091 0.00 0.002 57.33 0.005 56.80 0.013 49.13
D 0.707 0.67 1.598 1.63 1.356 0.00 2.278 0.00 0.043 26.93 0.700 11.07 0.405 28.77
WOH 0.491 1.03 0.871 1.23 2.399 0.00 1.826 0.00 0.023 28.53 0.022 27.90 0.101 27.93
WO 1.086 2.63 1.163 3.17 2.473 0.00 2.213 0.00 0.119 55.23 0.171 48.23 0.075 50.70
SH 0.419 0.57 0.069 0.43 2.517 0.00 4.184 0.00 0.016 0.00 0.018 0.00 0.072 0.00
S 0.177 0.57 0.137 0.43 1.308 0.00 3.538 0.00 0.029 0.00 0.026 0.00 0.133 0.00

TABLE III: ATE RMSE [m] and missing time [s] of the tested noisy sequences. Each experiment is 60 seconds long. Depth limited to 3.5 m.

Dynamic
VINS (VIO)

Dynamic
VINS (VO)

TartanVO StaticFusion DynaSLAM ORB-SLAMv2 RTABMap

Sequence ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

FH 0.069 0.67 0.201 0.43 0.551 0.00 0.085 0.00 0.241 3.43 0.149 0.00 0.126 0.00
F 0.647 1.20 1.337 2.93 4.132 0.00 2.866 0.00 0.147 49.23 0.431 39.10 0.115 46.93
DH 8.103 0.43 1.178 8.17 1.259 0.00 1.664 0.00 0.008 57.07 0.005 48.53 0.094 21.63
D 0.188 0.67 1.304 0.83 1.264 0.00 1.212 0.00 0.057 6.33 0.459 0.30 0.492 7.07
WOH 0.239 1.10 1.272 1.00 2.361 0.00 1.980 0.00 0.015 27.70 0.012 27.73 0.042 25.87
WO 0.501 2.20 0.985 3.47 2.380 0.00 2.807 0.00 0.083 55.20 0.163 48.23 0.053 50.60
SH 0.109 0.57 0.023 0.43 2.395 0.00 0.594 0.00 0.016 0.00 0.012 0.00 0.039 0.13
S 0.205 0.57 0.039 0.43 1.205 0.00 7.919 0.00 0.010 0.00 0.011 0.00 0.043 0.00

TABLE IV: ATE RMSE [m] and missing time [s] of the tested sequences w/o added noise. Each experiment is 60 seconds long. Depth limited to 3.5 m.

Dynamic
VINS (VIO)

Dynamic
VINS (VO)

TartanVO StaticFusion DynaSLAM ORB-SLAMv2 RTABMap

Sequence ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

FH 0.179 0.67 0.349 0.43 0.568 0.00 0.059 0.00 0.200 4.50 0.291 0.00 0.086 15.07
F 0.904 1.63 2.315 2.13 4.192 0.00 2.781 0.00 0.189 45.53 0.129 43.00 0.125 50.63
DH 1.749 0.43 2.047 3.40 1.214 0.00 14.938 0.00 0.002 57.40 0.005 56.73 0.030 50.07
D 0.611 0.67 1.616 1.23 1.350 0.00 22.374 0.00 0.109 5.97 0.652 5.13 0.171 41.73
WOH 0.561 1.27 1.550 0.90 2.389 0.00 4.926 0.00 0.025 27.83 0.022 27.87 0.047 33.30
WO 0.962 2.40 1.429 2.40 2.399 0.00 1.418 0.00 0.112 55.23 0.142 48.20 0.041 52.53
SH 0.404 0.57 0.063 0.43 2.537 0.00 2.721 0.00 0.017 0.00 0.017 0.00 0.061 17.13
S 0.199 0.57 0.066 0.43 1.259 0.00 22.282 0.00 0.029 0.00 0.027 0.00 0.220 11.53

TABLE V: ATE RMSE [m] and missing time [s] of the tested noisy sequences. Each experiment is 60 seconds long. Depth limited to 5 m.

Dynamic
VINS (VIO)

Dynamic
VINS (VO)

TartanVO StaticFusion DynaSLAM ORB-SLAMv2 RTABMap

Sequence ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

ATE [m]
Missing
Time [s]

FH 0.073 0.67 0.259 0.43 0.551 0.00 0.059 0.00 0.221 0.30 0.199 0.00 0.229 7.53
F 1.814 1.40 1.362 1.77 4.132 0.00 2.781 0.00 0.228 45.10 0.512 37.13 0.129 48.33
DH 7.492 0.43 1.811 7.50 1.259 0.00 14.938 0.00 0.008 54.40 0.009 49.53 0.108 48.33
D 0.201 0.67 0.738 0.43 1.264 0.00 22.374 0.07 0.038 4.33 0.275 0.53 0.154 23.40
WOH 0.228 1.10 1.256 2.57 2.361 0.00 4.926 0.00 0.012 27.70 0.015 27.70 0.053 30.70
WO 0.679 2.43 1.031 3.10 2.473 0.00 1.418 0.00 0.107 55.10 0.138 48.20 0.025 51.53
SH 0.121 0.57 0.023 0.43 2.395 0.00 2.721 0.07 0.012 0.00 0.011 0.00 0.019 10.60
S 0.226 0.57 0.035 0.43 1.205 0.00 22.282 0.00 0.011 0.00 0.014 0.00 0.018 12.60

TABLE VI: ATE RMSE [m] and missing time [s] of the tested sequences w/o added noise. Each experiment is 60 seconds long. Depth limited to 5 m.

[12] I. Abaspur Kazerouni, L. Fitzgerald, G. Dooly, and D. Toal, “A
survey of state-of-the-art on visual slam,” Expert Systems with

Applications, vol. 205, p. 117734, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417422010156

[13] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman,
L. Carlone, and J. A. Castellanos, “A survey on active simultaneous
localization and mapping: State of the art and new frontiers,” IEEE

Transactions on Robotics (T-RO), 2023.

[14] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar
and visual simultaneous localization and mapping library for
large-scale and long-term online operation,” Journal of Field

Robotics, vol. 36, no. 2, pp. 416–446, 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21831

[15] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transac-

tions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[16] M. R. U. Saputra, A. Markham, and N. Trigoni, “Visual slam
and structure from motion in dynamic environments: A survey,”
ACM Comput. Surv., vol. 51, no. 2, feb 2018. [Online]. Available:
https://doi.org/10.1145/3177853

[17] B. Bescos, J. Fácil, J. Civera, and J. Neira, “DynaSLAM: Tracking,
mapping and inpainting in dynamic environments,” IEEE RA-L, 2018.

[18] J. Liu, X. Li, Y. Liu, and H. Chen, “Rgb-d inertial odometry for a
resource-restricted robot in dynamic environments,” IEEE Robotics

and Automation Letters, vol. 7, no. 4, pp. 9573–9580, 2022.
[19] R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon, and D. Cremers,

“Staticfusion: Background reconstruction for dense rgb-d slam in
dynamic environments,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA), 2018, pp. 3849–3856.
[20] W. Wang, Y. Hu, and S. Scherer, “Tartanvo: A generalizable learning-

based vo,” in Conference on Robot Learning (CoRL), 2020.
[21] “BKMs Tuning RealSense D4xx Cam,”

https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/BKMs Tuning RealSense D4xx Cam.pdf,
[Accessed 23-Feb-2023].

[22] S. Zhang, A. Zhen, and R. L. Stevenson, “A dataset for deep image
deblurring aided by inertial sensor data,” Fast track article for IS&T

International Symposium on Electronic Imaging 2020: Computational

Imaging XVIII proceedings., pp. 379–1–379–6(6), 2020.
[23] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating

System (ROS): The Complete Reference (Volume 1). Cham: Springer
International Publishing, 2016, ch. RotorS—A Modular Gazebo
MAV Simulator Framework, pp. 595–625. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-26054-9 23

[24] M. Runz, M. Buffier, and L. Agapito, “Maskfusion: Real-time recog-
nition, tracking and reconstruction of multiple moving objects,” in
2018 IEEE International Symposium on Mixed and Augmented Reality

(ISMAR). IEEE, 2018, pp. 10–20.

https://www.sciencedirect.com/science/article/pii/S0957417422010156
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21831
https://doi.org/10.1145/3177853
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/BKMs_Tuning_RealSense_D4xx_Cam.pdf
http://dx.doi.org/10.1007/978-3-319-26054-9_23

	INTRODUCTION
	Related Work
	Own approach and contributions
	SLAM
	Network models variations
	YOLOv5 and Dynamic VINS
	Mask R-CNN and DynaSLAM


	CONCLUSIONS
	References

