
Game Room Map Integration in Virtual Environments for Free Walking
Marilyn Keller*

Gfi Informatique
Frédéric Exposito†

Gfi Informatique

ABSTRACT

Current tracking systems now enable real walking in a virtual scene
with a Head Mounted Display (HMD). However, the play area
usually remains limited to a few square meters because of tracking
limits and the lack of free space in game rooms. This paper describes
our demonstration showing how we can use an RGB-D sensor to
increase the real game surface by dynamically acquiring a map of
the actual game room and integrating it into the virtual environment.
Our system was designed to be integrable to any virtual environment
and aims to enable free walking with a HMD by showing the position
of the real obstacles to the user.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques; Human-centered computing—Visualization—
Interaction Paradigm—Virtual Reality Computing methodologies—
Computer Graphics—Image Manipulation

1 INTRODUCTION

Currently, virtual reality (VR) devices are multiplying and becoming
more and more accessible. They allow to immerse oneself in a virtual
environment, offering the possibility to look and move around, as
well as interacting with the environment. However, there are still
challenging issues that have to be addressed to enhance presence.
One of them is the ability to move around in the virtual scene. Indeed,
it has been shown that using walking to navigate in VR generally
improves the feeling of immersion [3]. Devices like the Oculus Rift
and HTC Vive are able to track the headset position and thus allow
the user to move in the real world by walking. But the tracked area
remains limited to a few square meters. Existing solutions include
showing the boundaries of this restricted area as the HTC Vive does
with Chaperone. Another solution is Redirected Walking that forces
the user to stay within a defined area by applying transformations to
the displayed scene [2].

Another approach called Simultaneous Localization and Mapping
(SLAM) can perform tracking on wider surfaces. Mostly used in
robotics, this technique allows to map the environment and deter-
mine the user position at the same time. It can work with various
sensors including cameras or depth cameras. With such a method,
it is possible to explore virtual environments by walking. The re-
maining limit is then the available free space and the presence of
obstacles, especially in typical homes or office environments. Ob-
stacle avoidance is a classic issue in robotics and navigation for
visually impaired people. To avoid collisions, Triebel et al. [5] use
depth cameras to create a traversability map of the environment.
This map represents the safe path one can follow through the en-
vironment and the obstacles. It can be used to generate navigation
instructions, which opens up various applications for navigation in
virtual environments.

Some other works exploited point clouds and SLAM for free
walking in virtual environments. Nescher et al. [1] combine redi-
rected walking with tracking based on SLAM and Sra et al. [4]

*e-mail: marilyn.keller@gfi.fr
†e-mail: frederic.exposito@gfi.fr

Figure 1: Illustration of our system. (top) The mapped game room.
(left) The computed traversability map. (right) We integrate the
traversability map to the virtual scene.

build a 3D scan of the room from captured point clouds and extract
the traversable zone to generate procedurally a virtual environment.
Compared to those works, our approach allows for the exploration
of any virtual environment without requiring neither an external
computer, nor a prior scan of the room, nor a procedural description
of the virtual scene.

We demonstrate a system that enables the user to explore any
virtual environment by walking in any space like an apartment or
an office. The principle is to integrate navigation information into
the virtual scene, such that the user knows where the real obstacles
are and can avoid them (Fig. 1). Our approach consists in using
a RGB-D sensor to generate and update in real time a 2D map of
the game area and SLAM based tracking to allow the user to walk
around the virtual environment with a HMD.

2 TECHNICAL DESCRIPTION

Our system is composed of a Googles Project Tango1 smartphone
attached to an adapted Cardboard VR viewer. The Tango smartphone
is equipped with a color and depth camera, it can capture point clouds
and perform tracking based on SLAM. We use the captured point
cloud to generate a traversability map of the real game space and the
tracking of the smartphone is used to control the virtual camera in
the scene, such that the player can walk around.

Each cell of the map corresponds to a 2D position in the horizontal
plane of the smartphone reference frame, so this map can then be
positioned and scaled properly in the virtual scene, such that the user
can walk on it and know where he or she is with respect to the real
obstacles. We use this map to generate virtual content showing to
the user the presence of obstacles or the free path.

2.1 Map Acquisition
To generate the traversability map, we project the point cloud cap-
tured by the Tango smartphone on the floor plane. We adopt the
same map representation as [5]. The traversability map is thus repre-
sented as a 2D cell grid covering the game space. We tested different
quantization and found that 2x2 cm cells give a good compromise

1Googles Project Tango: http://get.google.com/tango/



Captured 
point cloud

z

x

Colored by a shader in 
function of the point 

height in relation to the 
floor

Instant 
height map

Mean 
height map

Variance

Traversability map

𝑥𝑡 ҧ𝑥𝑡 = 𝛼𝑥𝑡 + 1 − α ҧ𝑥𝑡−1
y

x

Orthogonal camera 

𝛼 ∙ 𝑥𝑡 − ҧ𝑥𝑡
2

+ 1 − 𝛼 𝑣𝑎𝑟𝑡−1
𝑥

𝑣𝑎𝑟𝑡
𝑥 =

Figure 2: Maps computation from the point cloud. The computations
from one map to another are done by Unity shaders. α controls the
weight of a new frame measure.

a b c

Figure 3: The traversability map is integrated in real time to the virtual
room floor texture (a) and can be used to generate content like lava
lakes (b) where obstacles are or vegetation (c).

between the number of points projected in each cell and the final
map resolution. With this quantization, we can store in a texture
of 1024x1024 px, the map of a game space up to 20,48x20,48 m.
For each frame, we project the captured point cloud on a map to
get an instant height map of the field of view. We use this map
to update a height map of the entire room, a map of the measured
height variance and a map of the number of points measured by cell.
We then use those maps to generate and update a traversability map
by setting a threshold on the height but also on the variance and
number of points for each cell. To set the height threshold, we use
Tango’s API to detect the floor height out of a point cloud.

The points are projected with a Unity Camera and all the com-
putations from the instant height map to the traversability map are
done by shaders applied successively on the different textures, so
the computations are not heavier than a second camera render which
allows the user to play while the map is acquired without major
latency. The final map can then be simply displayed as a textured
plane in a virtual scene on which the user can walk, being aware of
the obstacles. The pipeline is summarized in Fig. 2.

To make possible the integration of our system to any virtual
environment in Unity, we divide our Unity scene into three blocks
to create a hierarchy we name RMV (Real world, Mixed world,
Virtual world), in order to separate the different kinds of contents.
The Real world block contains all the data we got from the real
environment, namely the maps (updated on the fly or loaded from
memory). The Virtual world block contains the virtual environment
with all the possible interactions and the Mixed world block contains
the content generated from the real world that is integrated into
the virtual environment. With this separation, we can integrate
navigation information in different forms in the Mixed world block
independently of the virtual environment.

2.2 Map Integration

For virtual environment exploration with real obstacles, path plan-
ning is very important. Indeed, if the user wants to go from a point
A to a point B in the virtual scene, there may be only one possible

path through the real obstacles, so the user has to know their posi-
tions in advance. Moreover, if the virtual content generated from
the map is complex, it can be too time-consuming to update this
content every frame from the updated traversability map. Thus, we
added a second game mode that enables to scan a game space and
use the map later. In this case, we post-process the traversability
map with a median filter before saving it, which partly removes the
noise. Beside SLAM, Tango is able to perform Area Learning. Thus,
once a room has been learned, the Tango smartphone can orient and
position itself in the room at any time. So, we are able to position
and scale properly a map that has been saved before. Furthermore,
the user only needs to scan a game space once, then the map can be
used in different games or scenarios.

We can integrate the captured traversability data into a virtual
scene in several ways. We implemented 3 visualization modes of the
traversability map. Some are dynamics while others are generated
from a saved map of a game room. The different representations
are illustrated in Fig. 3. The first one integrates the traversability
map into the existing virtual floor texture, the second one generates
a mesh from the map to represent the obstacles as lava lakes and the
third representation shows the possibility to generate virtual objects
where the real obstacles are, like vegetation.

3 DEMONSTRATION

Our demonstration presents a virtual shack that the user can walk
around wearing a Google Cardboard VR viewer. A game space of
a few square meters will be defined, with some obstacles within
(table, chair). The user will have to go get several objects dispersed
across the room while the free path will appear as a green and red
map mixed to the virtual floor texture. Once the game space has
been mapped, the user can click on a button on the VR Viewer to
generate lava lakes where the obstacles are, and thus enter a second
visualization mode. By clicking again, the lava lakes disappear and
virtual vegetation is generated where the real obstacles are. Fig. 3
shows the three visualization modes.

4 DISCUSSION AND CONCLUSION

Current VR devices enable free walking but not yet in any space.
RGB-D cameras are more and more accessible and are a good way
to get information on the occupancy of an area. Our demonstration
shows how we can combine those tools to integrate navigation infor-
mation into a virtual scene. Building a 2D map from the point cloud
simplifies the traversability data from 3D to 2D and makes easier
the generation of virtual content to indicate obstacles.

The limitation of such a system remains the map size and the
limitation to game spaces with constant floor height since we do
not handle steps. Moreover, knowing where the obstacles are does
not guaranty that the user can go anywhere in the scene, which
can be quite frustrating. Further work will study what are the best
metaphors for representing real obstacles in VR and methods to
improve the accessibility of a virtual scene by free walking.

REFERENCES

[1] T. Nescher, M. Zank, and A. Kunz. Simultaneous mapping and redi-
rected walking for ad hoc free walking in virtual environments. In Proc.
VR. IEEE Computer Society, Los Alamitos, 2016.

[2] S. Razzaque, Z. Kohn, and M. C. Whitton. Redirected walking. In Proc.
EUROGRAPHICS, vol. 9, pp. 105–106, 2001.

[3] R. A. Ruddle and S. Lessels. The benefits of using a walking interface to
navigate virtual environments. ACM Transactions on Computer-Human
Interaction, 16(5), Apr. 2009.

[4] M. Sra, S. Garrido-Jurado, C. Schmandt, and P. Maes. Procedurally
generated virtual reality from 3d reconstructed physical space. In Proc.
VRST, pp. 191–200. ACM, New York, NY, USA, 2016.

[5] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for outdoor
terrain mapping and loop closing. In Proc. IROS, pp. 2276–2282. IEEE
Computer Society, Los Alamitos, 2006.


	Introduction
	Technical Description
	Map acquisition
	Map integration

	Demonstration
	Discussion and conclusion

