




multiple MAVs fully autonomously. (2) Estimation of the
camera extrinsics and the 3D location of the person. (3)
Fitting a 3D body model robustly to 2D joint detections
from multiple �ying cameras. (4) We show, for the �rst
time, that it is possible to capture human movement fully
autonomously from aerial vehicles. (5) We compare our
3D poses with reference data computed from a multi-IMU
suit and the SIP method for pose estimation [26]. While
the accuracy is not yet on par with commercial marker-
based systems, this is a practical step towards a solution
that addresses each piece of technology in an integrated
whole. Our code and dataset are available athttps:
//github.com/robot-perception-group/
Aircap_Pose_Estimator .

2. Related Work

There is a long history of work on markerless, multi-
camera, motion capture. The classical methods all rely on
static, calibrated, cameras in laboratory conditions and we
do not review these here. Instead, we focus on methods that
work outdoors with moving cameras.

Hasler et al. [9] recover human pose from hand-held, un-
synchronized, cameras, while more recent work assumes
synchronization [28]. Both models assume that there ex-
ists a personalized 3D mesh of the person. These methods
also assume that the cameras view a scene with a highly
textured background that can be used to calibrate the cam-
eras and track their motions using standard structure-from-
motion methods. Like [9], Elhayek et al. [7] can deal with
unsynchronized cameras, which they time-sync using au-
dio. They also require a 3D template of the body. They re-
quire some user interaction to get the initial camera calibra-
tion using features and bundle adjustment. They then jointly
estimate the body pose and camera calibration parameters.
The �rst use of the body pose for camera calibration was
in [14] where they assume a repetitive motion. By using
the same pose of the body from different views, they effec-
tively treat the body as a 3D calibration object. In contrast
to our scenario, in the above work with hand-held cameras,
the human takes up a signi�cant portion of the image. With
outdoor aerial applications, the person is frequently far from
the camera and the ground may not have suf�cient texture
for structure from motion.

Flying motion capture systems have primarily been re-
stricted to laboratory environments. Here the vehicles do
not need to deal with wind, making the control problem eas-
ier. Additionally, indoor environments offer many cues for
camera calibration and tracking. For example, the FlyCap
system [31] uses RGB-D sensors mounted on multiple in-
door micro aerial vehicles (MAVs) [31]. They develop a
system for autonomous vehicle control and 3D human pose
estimation. However, the method proposed in [31] involves
a template scanning as the �rst step where the subject needs

to stay still for some time. FlyCap also requires a textured
background for stable �ight control. They only test indoors
so do not have to deal with wind and �y the drones close to
the person so that they are large in the camera �eld of view.

In contrast, the Flycon system works outdoors but as-
sumes active LED markers are worn on the body. This ef-
fectively takes the concept of traditional marker-based mo-
cap, using IR sensors and retrore�ective markers, and ex-
tends it to �ying cameras. Their system works outdoors and
the approach leverages the robust and mature algorithms
available for IR based MoCap systems. Like earlier work
[7] the approach jointly estimates body pose and camera
extrinsics. The highly visible markers signi�cantly sim-
plify the problem but require a subject preparation step to
place the IR markers on the subject's body. Because of this
simpli�cation, Flycon runs in realtime whereas our method
takes a two-stage approach. We perform rough realtime 3D
tracking of the human during capture and then off-line we
estimate the 3D pose. This works well for motion capture
but would not be appropriate for a realtime human-robot in-
teraction scenario.

Here we show that explicit LED markers are not nec-
essary, given recent advances in 2D human joint location
estimation using deep networks [5, 8]. However, due to the
small apparent size of the subject and aerial views, these
methods result in a noisy estimate.

Recent work also shows promise in 3D human pose esti-
mation from monocular data [4, 12, 17, 19], but these meth-
ods do not use multiple camera views. These 3D estimates
from separate cameras cannot be fused easily due to am-
biguity in scale and perspectives. In [10] they extend SM-
PLify to multiple camera views but assume the cameras are
stationary. OpenPose [5] also can take multiple calibrated
camera images and return 3D joint locations but this ap-
proach cannot deal with the inaccurate calibration of �ying
cameras. Although the 3D estimate from these methods can
not be used directly, in our proposed approach we leverage
them as noisy sensors for 2D joints positions and show how
they can be ef�ciently fused to obtain a consistent 3D pose
and shape estimate.

For outdoor capture, there are other technologies that
do not rely on computer vision. Commercial systems, like
Xsens are based on subject-mounted inertial measurement
units (IMUs) and recent work has shown that body pose can
be estimated from a small number of such units [11, 26].
These methods have several limitations however. Subject
preparation is required, the subject has to be cooperative,
and the sensors can affect movement. Additionally, the
IMUs drift and can be signi�cantly affected by metal in the
environment. Several methods combine cameras [25, 24] or
depth sensors [32] and IMUs to address some of these prob-
lems. Here we use an IMU method to create reference data
(pseudo ground truth) for the evaluation of our purely RGB



solution.

3. Proposed Approach

We �rst describe our motion capture hardware and the
online phase. Then we discuss our system pipeline in de-
tail by introducing mathematical symbols and notations fol-
lowed by the algorithm. The pipeline consists of four steps.

3.1. Step 1 : MoCap system setup and online data
acquisition phase

Step 1 in Fig.2 shows our MAV-based outdoor motion
capture system tracking and following a person. It con-
sists of a team of self-designed 8-rotor MAVs (see in Step
3 in Fig. 2 inset). Each MAV is equipped with a 2MP HD
camera, a computer with an Intel i7 processor, an NVIDIA
Jetson TX1 embedded GPU and an OpenPilot Revolution1

�ight controller board. We use the �ight controller's posi-
tion and yaw controller as well as its GPS and IMU-based
self-pose (position and orientation) estimation functionali-
ties.

To detect, track and follow the person, we use a
perception-driven formation approach [21, 23]. Each copter
runs a single shot detector (SSD) multibox [15] on the im-
ages acquired by its camera using its on-board GPU to de-
tect the person's outer bounding box on the image frames.
A detection rate of� 4 Hz is achieved during the online
acquisition. The MAVs then share the person's 2D image
bounding box positions and their 3D self-pose estimates
wirelessly between each other. Subsequently, using a co-
operative detection and tracking (CDT) �lter [21] that runs
on-board each MAV's CPU, they estimate the 3D position
of the person's center of mass in a consistent world frame
(GPS-frame). Using this method, the MAVs also improve
their 3D self-pose localization. One key feature of the CDT
�lter is that it allows the detector to focus on the most in-
formative region of interest (ROI) on future image frames,
thereby making it computationally ef�cient. Note that even
though the detections are obtained at� 4 Hz, the CDT �lter
runs at� 30 Hz, alternating between the standard prediction
and update steps, except that the updates happen at a lower
frequency.

In the online phase, the goal is to keep the person in the
�eld of view and centered in each MAV's camera. Addi-
tional constraints include maintaining threshold distances
to the other MAVs and static obstacles. To this end, each
MAV runs a model predictive control (MPC)-based forma-
tion controller [23] on its on-board CPU. The MPC's objec-
tive is to maintain a threshold distance to the subject while
adhering to the aforementioned formation constrains. Ori-
enting the MAV towards the subject is achieved using an
additional yaw controller (separate from the MPC). Further

1OpenPilot:http://www.librepilot.org/site/index.html

details regarding the CDT tracker and formation controller
can be obtained from [21] and [23], respectively.

During the online phase, all MAVs save images on-board
at � 40 Hz and their self-pose estimates at� 100 Hz. As the
camera is rigidly mounted on each MAV, the extrinsics of
the camera are obtained using a �xed and known transfor-
mation from the MAV's self-pose (position and orientation)
in the world frame.

3.2. Step 2 : 2D region of interest and MAV self pose
re�nement

In this step, we run the CDT algorithm of Step 1 of�ine
to improve the subject's tracked position estimate and each
MAV's self pose estimates. The SSD Multibox detector
runs on every frame in Step 2. The CDT �lter leverages
these every-frame observations to obtain the ROIs for every
image and improve the MAV self-pose estimates.

3.3. Step 3 : Of�ine pose estimation

The rest of this section discusses Step 3 in which the
person's pose and shape, as a function of time, is estimated
using the data acquired in the online phase (Step 1) and re-
�ned in Step 2. Note that Step 4 concerns comparison with
ground truth and is, therefore, discussed in the next section
with experiments and results.

3.3.1 Preliminaries

Consider a system withC moving cameras. The intrinsic
parameters of each camera are �xed. Since the cameras are
moving in the world frame, their extrinsic parameters (rota-
tion vector, translation vector) are changing over time. The
rotation vector(3 � 1) and position vector(3 � 1) of cam-
era c at any time instantt is represented asr c;t and pc;t
respectively.

SMPL [16] is a state of the art human body model. It
is learned by using thousands of high-quality body scans of
people with a wide variety of body types. It is parameter-
ized by two latent parameters: pose and shape. The pose
parameter is represented by� . It is a 72 � 1 vector, i.e.
3 axis angle values for each of the 23 joints and 3 values
for root (pelvis) joint location (23*3+3=72). The SMPL
shape parameter� is a(10 � 1) vector whose elements are
weights of the 10 most signi�cant eigen shapes (refer [16]
for details).

2D joint detections on the collected images can be highly
noisy. We use multiple 2D joint detectors for robustness.
Say we useD detectors and each detector givesN joints
positions on camera plane. The position ofnth joint given
by dth detector oncth camera plane at time instantt is a
2 � 1 vector represented asj n;d

c;t . The detector also gives a
con�dence value in terms of probability for each detected
joint. It is represented aswn;d

c;t .



The SMPL pose vector� is the collection of all the joint
angles. However, human poses do not span the entire an-
gle space. To restrict� to the natural pose space, we use
another parameterization, with a known distribution. This
method, also called Vposer, is �rst introduced in [20]. The
new parameterization of human pose, has 32 elements, and
is the latent space of a VAE (Variational Auto Encoder) [13]
with a Normal distribution. Vposer is trained on more than
1 million poses of multiple subjects and is capable of pro-
ducing novel, realistic human poses. For more details on
the data and actual training procedure refer to [20]. Vposer
provides a mapping from the latent variablez to full pose
variable� given as

� = V(z): (1)

We can exploit the known distribution of the latent vari-
able as a prior in our optimization objective, by keeping its
values close to the mean of the Normal distribution. This
translates to a simple L2 norm on the new parameterization.

3.3.2 Algorithm

We use the detected 2D joints and intrinsic parameters to
optimize for body model parameters along with camera ex-
trinsics. Camera extrinsics are initialized with the re�ned
estimates obtained in Sec.3.2. This is done independently
for each time step.

Per-frame �tting We minimize a cost function at each
time stept, which can be decomposed into the following
components:

E (r 1��� C;t ;p1��� C;t ; z t ; � t ) =

E2D + � r;p E r;p + � z Ez + � � E � ;
(2)

where� r;p , � z and � � are weights of the corresponding
components.

The �rst term ensures that the 2D projection of the
model's 3D joints remains close to the observed 2D joints.
It is given as

E2D (zt ; � t ; r c;t ; pc;t ) =
X

c;n;d

wn;d
c;t � � 1

� 
 �

�
r c;t ; pc;t ; J n (V(z t ); � t )

�
� j n;d

c;t




�
;

(3)

whereJ n is the joint regressor function that gives thenth

joint position given the SMPL pose and shape parameters.
� is the projection function that projects the 3D point on the
image plane, given camera parameters.� � 1 is the Geman-
McClure robust penalty function with a �xed parameter� 1,
written as

� � 1 (e) =
e2

e2 + � 2
1

: (4)

As explained in Sec.3.1, camera extrinsic parameters are
obtained directly from the MAV's self-pose data saved dur-
ing the �ights made by the MAV formation. The self-pose
estimates of the MAVs are prone to various sources of er-
ror, e.g., GPS and IMU drifts and changing prevelant wind
speeds causing �uctuations in the barometer measurements.
This causes the camera extrinsic parameters to be noisy.
Hence, we also optimize for the camera extrinsic parame-
ters, with the objective of keeping them close to the values
estimated online by the MAVs, by including another cost
term,

E r;p = � � 2 (r c;t � ~r c;t ) + � � 2 (pc;t � ~pc;t ); (5)

where~r c;t and ~pc;t are the rotation and position vectors of
camerac at any timet estimated online by the MAVs dur-
ing the data acquisition phase.� � 2 is the same function
described in (4).

Ez is a regularization term on the latent pose parameter
z given as

Ez = kzk: (6)

� is a vector of the 10 most signi�cant eigen shapes of
SMPL, which we regularize withE � as

E � = k� k: (7)

4. Experiments and Results

4.1. Data Acquisition

Using our MAV-based motion capture system described
in Sec.3.1, we performed a data collection formation �ight
using 3 MAVs. Our on-board formation controller, MAV
self-pose and person's (3D position, not joint poses) state
estimator, etc., are implemented as Robot Operating Sys-
tem (ROS) nodes which makes it easier for MAVs to com-
municate with each other using standard message types.
The MAV formation constraints of altitude and horizontal
distance from the subject is set to8m. The value is rel-
atively high due to safety considerations. During the for-
mation �ight, the subject is requested to walk on a grassy
�eld at slow to moderate speeds and later perform ran-
dom motion sequences, such as jumping jacks, bending for-
ward/backward, swaying arms, etc.

4.2. Dataset

All images and camera extrinsic and intrinsic parameters
are saved on-board each MAV as ROS messages in a rosbag
�le. Each message has Unix timestamp denoting the time
of its acquisition. We receive images from each camera at
approx. 30-40 frames per second (fps). Even though both



MAV cameras have the same frame rates, they are not syn-
chronized. Meaning, they do not necessarily capture im-
age frames simultaneously. For any image from the �rst
MAV's camera, there might not exist an image from the
other MAV's camera at the same instant. Also, as camera
parameters are available at a much higher frequency than
images, for each image in the system, camera intrinsic and
extrinsic parameters are available. Later, we extract data
from the saved bag�le, re�ne them and use it to estimate the
shape and pose of the subject using the method described in
Sec.3.3.

4.3. Reference Data

We obtain reference (ref) data to evaluate our reconstruc-
tions from two different systems, i) a commercially avail-
able IMU MoCap system (Xsens) [3] and ii) a pair of dif-
ferential GPS modules. IMU system is used to obtain ref-
erence data for body pose relative to the root joint. For ref-
erence SMPL parameters, we use a state of the art IMU
MoCap method Sparse Inertial Poser (SIP) [27]. It uses raw
data from Xsens and gives SMPL parameters. However,
the global root joint position and orientation from SIP are
not reliable for ref comparison. To solve this issue, we use
a pair of differential GPS modules, each one attached to a
shoulder of the subject to get the position of root joint in the
global coordinate system. The reference global root orien-
tation still remains unestimated as it is not directly measur-
able with these two systems.

4.4. Implementation

Using the approach in [21] the MAVs autonomously
maintain a formation around the person while following
him/her and keeping him/her centered in their camera's �eld
of view. During the formation �ights, the MAVs detect
the person in their camera image using single shot detector
(SSD) multibox [15] and estimate his/her 3D world position
(not the joint pose) and uncertainty associated, in order to
maintain the formation. This also results in a cropped region
of interest (ROI) which has the highest likelihood of having
the person inside it. For every image, the MAVs also save
this corresponding ROI. The ROI data and MAV self pose
estimates are then re�ned of�ine and saved. We crop the
full images based on the provided ROIs and apply multiple
joint detectors, each producing a set of 2D joints estimates.
If the ROI goes outside the camera frame, we take the full
image for 2D joint detection.

We then use two state of the art 2D joint detectors: al-
phapose [8, 30] and OpenPose [5, 22, 29]. All the dataset
images are processed using these joint estimators and their
output is saved with the same timestamp as that of the im-
age. We use these 2D joints along with the camera extrinsic
and intrinsic parameters in our cost function as given in (2).
Since the cameras are not synchronized, we use the closest

actual shape shape estimation
Joint ejp eja ejp eja

L Hip 0 6:73 0 6:81
L Knee 0:0767 8:60 0:0876 8:69
L Ankle 0:1629 5:49 0:1904 5:50
L Foot 0:1843 9:71 0:2157 9:44
R Hip 0 6:62 0 6:60

R Knee 0:0680 9:59 0:0760 9:67
R Ankle 0:1251 7:79 0:1448 7:73
R Foot 0:1461 8:10 0:1693 7:86
Spine1 0 5:32 0 5:18
Spine2 0:0264 3:01 0:0290 2:96
Spine3 0:0397 1:61 0:0439 1:59
Neck 0:0931 6:25 0:1068 6:11
Head 0:1237 5:13 0:1428 4:90

L Collar 0:0683 4:09 0:0771 3:82
L Shoulder 0:0779 13:15 0:0861 13:28
L Elbow 0:0863 16:41 0:1023 16:15
L Wrist 0:1689 10:46 0:1984 10:21
L Hand 0:2045 2:34 0:2411 2:30
R Collar 0:0694 5:55 0:0777 5:23

R Shoulder 0:0919 10:96 0:0993 10:87
R Elbow 0:0987 22:15 0:1075 21:65
R Wrist 0:1781 11:41 0:2013 11:29
R Hand 0:2134 3:19 0:2417 3:19
Pelvis aligned with the ref

Table 1: Mean error in joint positions (meters) and joint angles (degrees)
(using actual body shape vs shape estimation). Pelvis joint is aligned with
the ref. The position error for LHip, R Hip and Spine1 becomes0 because
these joints are rigidly connected to the Pelvis.

frames in time from all the cameras for per-frame �tting.
We use a PyTorch [1] implementation of SMPL to regress
from SMPL parameters to 3D joint positions in (3). The to-
tal cost is sequentially minimized for each frame to get the
optimized value of SMPL pose and camera extrinsic param-
eters. The value of� 1 (3) and� 2 (5) are 40 and 10 respec-
tively. We found after trial-and-error that these values work
well. After optimizing for a frame, the optimized parame-
ter values are used as initial values for the next frame except
for the camera extrinsics. These are initialized with the ones
obtained from Sec3.2. For optimization, we use the Adam
optimizer from PyTorch. The number of iterations for the
�rst frame is 1000 with 0.25 learning rate and 100 with 0.1
learning rate for subsequent frames.

4.5. Results and Discussion

First, we compare our reconstructed pose with the ref-
erence pose. In this, we zero out the global position and
rotation of the reconstructed SMPL and ref SMPL. In Ta-
ble 1, we show the mean error in joint positions(ejp ) and
mean error in joint angles(eja ). ejp is calculated by taking
the Euclidean distance between each estimated joint and the
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