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Abstract

Neural activation models that have been proposed in the literature use a set of example words
for which fMRI measurements are available in order to find a mapping between word seman-
tics and localized neural activations. Successful mappings let us expand to the full lexicon of
concrete nouns using the assumption that similarity of meaning implies similar neural activation
patterns. In this paper, we propose a computational model that estimates semantic similarity in
the neural activation space and investigates the relative performance of this model for various
natural language processing tasks. Despite the simplicity of the proposed model and the very
small number of example words used to bootstrap it, the neural activation semantic model per-
forms surprisingly well compared to state-of-the-art word embeddings. Specifically, the neural
activation semantic model performs better than the state-of-the-art for the task of semantic simi-
larity estimation between very similar or very dissimilar words, while performing well on other
tasks such as entailment and word categorization. These are strong indications that neural acti-
vation semantic models can not only shed some light into human cognition but also contribute to
computation models for certain tasks.

1 Introduction

The human ability of translating concepts into words and back depends on the ability of mind to decode
and encode meaning. This mental process, which is not currently completely understood, has captivated
the interest of both neuroscientists and computational linguists (Haxby et al., 2001; Ishai et al., 1999;
Cree and McRae, 2003; G. Kanwisher et al., 1997; Just et al., 2010). Specifically, when a person
experiences a visual stimulus of a concept, reads, speaks or writes a word, particular neuronal regions in
the brain are activated (Pulvermller, 2001).

Various studies have been carried out to explore brain encoding and decoding mechanisms when a
stimulus is present, as detailed next. For visual stimuli, studies have shown that is feasible to discriminate
and reconstruct images using patterns of neural activity, mainly found in the visual cortex (Kay et al.,
2008; Thirion et al., 2006; Nishimoto et al., 2011; Naselaris et al., 2009; Miyawaki et al., 2008), the part
of brain responsible for visual information processing. Other works have demonstrated the relationship
between cognitive perception and speech (Benson et al., 2001; Formisano et al., 2008). Regarding textual
stimuli, researchers have shown distributed semantic maps of words are present in our brains (Huth et
al., 2012; Sudre et al., 2012).

Lexical semantics are based on the assumption that similar words appear in similar contexts (Harris,
1954). Based on that assumption, two different approaches for building semantic models have been
proposed. The first approach is to encode word semantics, by applying dimensionality reduction of
context-word occurrence matrix which was computed using large corpora (Deerwester et al., 1990; Bul-
linaria and Levy, 2012). The second approach replaces thse “counting” by predictive models (Baroni et
al., 2014) based on neural networks (Bengio et al., 2000; Mnih and Hinton, 2007; Mikolov et al., 2013;
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Turian et al., 2010; Collobert and Weston, 2008). Counting models calculate and weight context vectors,
while predictive models learn word vectors by guessing the context in which these words tend to appear.

In pursuance of enriching such lexical semantic models with cognitive information, as well as discov-
ering the cognitive representation of word semantics, a number of studies have attempted to examine the
mapping between semantic representation of computational and cognitive models. In prior work, it has
been shown that semantic of words are related to activation potentials in regions of the brain and that
decoding between neural activations and semantic content (Mitchell et al., 2008; Palatucci et al., 2009;
Sudre et al., 2012; Murphy et al., 2012; Pulvermller, 2001) is possible. Furthermore, neural activations
are shown to have predictive power with respect to semantics at the word (Mitchell et al., 2008; Jelodar
et al., 2010) and sentence (Jing et al., 2017; Anderson et al., 2017) level. Computational studies that aim
to explore the influence of neural activations in word representations have shown that by incorporating
neural activations when training lexical semantic models can improve their generalization ability despite
the small amount of neural activation data used (Fyshe et al., 2014; Ruan et al., 2016). These works
show that a strong relationship exists between computational semantic models and neural representa-
tions. However, it remains to be seen how cognitive semantic representations, including localized neural
activation patterns can help improve the performance of computational semantic models, especially for
complicated classification and recognition tasks.

Motivated by the aforementioned studies that show correlation between localized neural activations
and word semantics, we propose a computational model for semantic similarity that utilizes predicted
neural activations learned from a small set of concrete nouns. The proposed model is applied to a va-
riety of natural language processing tasks. The neural activation prediction model used here for lexical
expansion is that proposed in (Mitchell et al., 2008). In our list of experiments, we first compare the
performance of the proposed neural activation model for a concrete noun semantic similarity task and
show that for certain word pairs it outperforms the state-of-the-art. Then we evaluate the performance
of neural activation vectors for a word classification, sensory modality (sense) classification and textual
entailment task. The fusion of neural and traditional word embedding vectors are shown to outperform
the state-of-the-art. To our knowledge, this is the first time brain imaging data are successfully used for
the aforementioned tasks.

2 Related Work

A significant body of literature investigates neural activations by mapping word semantics to fMRI data.
Most of them have in common a basic idea published in (Mitchell et al., 2008). In this work, a model
is introduced that maps low dimensional word coocurence vectors to neural activations. The approach
is validated in a neural activation-based word classification task. This work shows that the mapping be-
tween lexical semantic spaces constructed via computational lexical semantic algorithms and 3D neural
activations representations measured via fMRIs is possible.

A first variant of the aforementioned model was introduced in (Jelodar et al., 2010), where the use
of WordNet features was investigated for constructing the lexical semantic space. Word classification
results reported showed similar performance to (Mitchell et al., 2008), however, by fusion of the two
lexical semantic models improved classification results where achieved.

A second approach, introduced in (Levy and Bullinaria, 2012), extends the work in (2008) by in-
creasing the number of fMRI voxels used in the neural activation vectors and the number of featurs
(dimension) of the lexical semantic model showing additional performance improvement.

Algorithms that count word coocurences and utilize hand-crafted features for constructing lexical se-
mantic models can be found in (Bullinaria and Levy, 2012; Baroni and Lenci, 2010).Moreover, various
lexical semantic models that predict a word based on its context have also elaborated (Bengio et al.,
2000; Mikolov et al., 2013; Collobert and Weston, 2008). Word prediction models tend to perform
better in natural language processing tasks such as analogy, similarity, synonym detection, concept tax-
onomy (Baroni et al., 2014) and sentiment analysis (Socher et al., 2011; Socher et al., 2013). However,
their relationship with cognitive lexical representation is not yet well understood, at least to a degree that
would allow us to improve current computation lexical semantic models. Along these lines, there have



been two main lines of work. In (Fyshe et al., 2014), neural activations were integrated in the training
procedure of lexical semantic models in order to learn word embeddings that include latent neural infor-
mation. Although a small number of words was used to bootstrap the neural activation representations,
it have been shown that their model can predict unseen words and generalizes well across different top-
ics. Ruan et al. (2016), have shown that neural activations for different parts of the brain are correlated
with word embeddings especially skip-grams. A semantic model was also proposed for training word
embeddings as a first step towards including cognitive information in a word vector representation.

3 Approach

3.1 Neural activations prediction

The neural activation prediction model used here is that proposed in Mitchell (2008)1 First activation
potentials are measured from fMRI images. We consider voxels to be 3D pixels created by MRI scanning
software depicting brain state. Every voxel v is associated with a TN ×V ′ array, M , of neural activation
values (blood flow), where V ′ is the number of voxels, T is the number of trials, N is the number of
stimuli, in our case different nouns. The first step is to select the most stable (salient) voxels, V to include
in the neural activation model. The stability score sv for voxel v is computed as the average pairwise
Pearson correlation % for all the different row combinations of M , as follows:

sv =
2

TN(TN − 1)

TN∑
i=1

TN∑
j=i+1

%(Mi,:,Mj,:), ∀ v = 1 · · ·V ′ (1)

where Mi,: is the ith row of matrix M. High stability scores, sv, as described in Eq. 1, indicate that
corresponding voxels have consistent representations across different trials and nouns.

Next, the neural activation predictive model proposed in (Mitchell et al., 2008) is defined.
For this purpose we identify a set of m seed words s1, s2, ..., sm, and a function fi(w) that estimates

the association between seed word si and word w. The core assumption of the model is that words
that are closely associated have similar neural activation patterns, thus the mapping from the associative
(semantic) space to the neural activation (voxel) space is estimated as follows:

yv(w) =
m∑
i=1

cv,i fi(w), ∀ v = 1 · · ·V, (2)

where yv(w) is the activation of voxel v for word w, fi(w) is a scalar value that reflects the association
between the ith seed word si and the word w, m is the number of seed words (semantic features), V
is the total number of voxels, and cv,i is a learned weight ranging between 0 and 1. A set of 25 verbs
(seed words) was identified in (Mitchell et al., 2008) as semantic features si; seed words were manually
selected according to psycholinguistic criteria. The similarity function fi(w) was set to the (normalized)
co-occurrence frequency of the ith seed word and w, estimated on a corpus. The weights cv,i were
estimated using the fMRI data on words w using linear or ridge regression estimation. Once cv,i have
been estimated, Eq. 2 can be used to predict the neural activation of unseen words2.

3.2 From neural activations to similarity

Based on the hypothesis that similar words have similar neural activations, we propose a model to esti-
mate word similarities based on neural activations predicted using Eq. 2. We evaluated various metrics
for computing semantic similarity from neural activations. We present only a top performing metric

1The features in (2008) are attractive because of their simplicity and low-dimensionality, and generalize well for lexical
expansion to a large lexicon compared to other works described in Section 2 that potentially perform slightly better.

2Although Eq. 3 can be used to perform lexical expansion an any token w for which fi(w) can be computed, the proposed
framework (choice of f() and associated fMRI data) is meant for concrete words and typically only neural activations for
concrete words are reported in the literature.



formulated as the weighted square distance, namely:

S(w1, w2) =
V∑

v=1

bv (yv(w1)− yv(w2))
2, (3)

where S(w1, w2) is the semantic similarity between words w1 and w2, V represents the number of voxels
used in the predicted neural image, yv(w) is the activation of a voxel for word w, and bv is a learned
weight of the contribution of a particular voxel to the similarity metric. In Figure 1 the predictions

Figure 1: Neural activation images for two similar concrete nouns including the 500 most stable voxels
(participant P1). This figure shows just one horizontal slice in Montreal Neurological Institute (MNI)
space of the three-dimensional image.

of neural activations for two highly similar nouns in fMRI dataset are presented. Visualizations were
created from 500 voxels to gather insight for our computational model. Observe that both brain images
have similar neural activations both in terms of which parts of the brain are activated and the activation
values. Although, we don’t utilize localization information, our weighting schema implicitly detects
activation patterns by variations in bi coefficients.

4 Experimental Data and Preprocessing

We built the neural activations prediction model as in (Mitchell et al., 2008) using fMRI data for 60
concrete nouns. We calculate the semantic features fi(w) for each concrete noun, w, by counting its
co-occurences with 25 manually selected verbs in a large corpus created in (Iosif et al., 2016) by ag-
gregating results of web queries to Yahoo. The fMRI data used in our experiments were collected and
processed by (Mitchell et al., 2008) and are publicly available. In this dataset, each one of the partici-
pants was presented 60 concrete nouns (for 6 times each) through a line drawing which was labeled with
the corresponding noun. Each out of nine subjects, was asked to think about properties of the presented
noun during scanning procedure. Finally, a vector representation of the whole cortex neural activation
was extracted. Further details about the dataset can be found in (Mitchell et al., 2008) and its supple-
mentary website3. Prior to training both training and test data are averaged across trials and the final
neural activations of each noun are mean normalized. The following datasets have been used for seman-
tic similarity, taxonomy creation, sense classification and entailment tasks. The code of the present work
is publicly available4.

MEN: For the semantic similarity task we train and evaluate our model on the MEN dataset (Bruni et
al., 2014) which consists of 3000 word pairs (2000 for training set and 1000 pairs for test set). Each
word pair is associated with a similarity score. This score was computed by averaging the similarities

3http://www.cs.cmu.edu/˜tom/science2008/
4https://github.com/athn-nik/neural_asm
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that provided by human annotators. We hand-labeled the dataset to keep only concrete nouns because
the neural activation prediction model is trained only on concrete nouns. This resulted in 1114 pairs (562
unique words) in the training set and 524 pairs (438 unique words) in the test set. The similarity scores
were normalized between zero and one. We also created 2 subsets of MEN of 39 highly similar and 79
highly dissimilar word pairs using a thresholding technique, where pairs with similarity score over 0.85
and under 0.1 belong in the first and second subset respectively.

ESSLLI: For the taxonomy creation task, we evaluate our model on the ESSLLI dataset (Baroni et
al., 2008). It consists of a three-level hierarchy (2-3-6 classes). The lowest level of hierarchy contains
6 classes of concrete nouns (birds, land animals, fruit, greens, vehicles, tools), the middle 3 classes
(vegetables, artifacts, animals) while the upper class is distinguished between living beings and objects.

Sensicon: For sense classification, we use the Sensicon (Tekiroglu et al., 2014) dataset. Sensicon is a
dictionary which contains 22684 English words and associates each word with 5 numerical scores and
a part of speech annotation. The scores correspond to the relevance of the word to each of the 5 senses,
namely vision, hearing, taste, smell and touch. In order to use these scores for the sense classification
task we selected nouns who have non-zero scores in only one sense results in 1011 words.

SNLI dataset: For the entailment task, we used the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015) which contains around 570K sentence pairs with three labels: entail-
ment, contradiction and neutral. We preprocessed the initial dataset to keep only training and testing
examples that have at least two or three concrete nouns that are also in the MEN dataset for both premise
and hypothesis. This resulted in 30,498 training and 592 test samples for the case of at least three com-
mon words and 171,528 training and 3201 test samples for the case of at least two common words with
MEN.

5 Experiments on Semantic Similarity

In this section we present baseline results on the neural activation prediction model of (Mitchell et al.,
2008) and investigate the performance of the proposed neural activation semantic model of Eq. 3 for a
semantic similarity task on the MEN dataset. Our goal here is first to reproduce the results in (Mitchell
et al., 2008) and then to investigate the properties of neural activation embeddings semantic models
compared to traditional embedding models, e.g., word2vec in (Mikolov et al., 2013).

5.1 Neural activations prediction

As proposed in (Levy and Bullinaria, 2012), we choose the 500 most stable voxels from the fMRI images.
Then, cv,i is estimated as in Eq. 2 by applying linear regression per voxel across different words with
regularization. To evaluate the neural activation prediction model we used cosine similarity in order to
evaluate if our prediction for the possible pair of test words is correct or not. Correct prediction means
that sum of the cosine similarities of the correct matched pairs is greater than the false matched pair as
shown next:

cos(~i1, ~p1) + cos(~i2, ~p2) > cos(~i2, ~p1) + cos(~i1, ~p2), (4)

where~i is the actual image and ~p is the predicted image of 500 voxels. The dataset, which consists of 60
nouns, is split in train set (the rest 58 nouns) and test set (2 nouns) for all possible 1770 combinations
using cross-validation.That process is followed for every one of 9 participants. The results are shown
reported in Table 1 when using linear and ridge regression to estimate cv,i in Eq. 2. Results in Table 1
are on average consistent with the baseline results reported in (Mitchell et al., 2008). We achieved higher
performance for some participants and lower for others. This can be attributed to the different tools we
used to implement the system (as we used scikit-learn (Pedregosa et al., 2011) and (Mitchell et al., 2008)
used Matlab). Moreover, we experimented with the number of voxels and our results agree with the
findings reported in (Levy and Bullinaria, 2012).



Participant ID Linear Regression Ridge Regression Mitchell et. al
1 0.79 0.84 0.83
2 0.75 0.82 0.76
3 0.63 0.76 0.78
4 0.63 0.79 0.72
5 0.61 0.78 0.78
6 0.58 0.65 0.85
7 0.58 0.75 0.73
8 0.65 0.68 0.68
9 0.57 0.68 0.82

Mean 0.64 0.75 0.77

Table 1: Baseline Model Results

5.2 Similarity task

For the semantic similarity task, we applied Eq. 3 for the word pairs of the MEN dataset. The yv(.)s
of Eq. 3 were computed using Eq. 2 utilizing up to 250 voxels. We exploited the training subset
of MEN for learning the b weights of Eq. 3 using linear regression. Those weights were used for
computing the similarities for the test subset of MEN. The Spearman correlation coefficient between
the human similarity scores (ground truth) and the similarity scores computed by Eq. 3 was used as
evaluation metric. The results are presented in Table 2, where we compare the performance of the
proposed neural model (averaged across participants) against the performance yielded by the w2vec
word embeddings (Mikolov et al., 2013) trained on the GoogleNews corpus.

Subset Number of voxels Neural model w2vec
All Concrete nouns 50 0.43 0.76

100 0.47 0.76
150 0.48 0.76
200 0.48 0.76

Most & Least similar 50 0.58 0.73
100 0.82 0.73
150 0.82 0.73
200 0.88 0.73

Least similar 50 0.43 0.43
100 0.44 0.43
150 0.47 0.43
200 0.63 0.43

Most similar 50 0.28 0.14
100 0.63 0.14
150 0.68 0.14
200 0.83 0.14

Table 2: Evaluation results on the concrete nouns subset of the MEN test set, and on most and least
similar concrete word subsets.

Overall, the w2vec model outperforms the neural model achieving 0.76 correlation on all concrete
nouns. For the neural model, performance increases as more voxels are exploited reaching 0.48 corre-
lation is obtained for at least 150 voxels. In Table 2, the performance is also shown for three subsets of
the MEN test set, namely, “Most & Least similar”, “Least similar” and “Most similar” concrete nouns.



For all three subsets, the performance achieved by the neural model exceeds5 the performance of w2vec
when at least 100 voxels are used. The performance improvement becomes more pronounced as the
number of voxels increases. The best correlation score achieved is 0.88 for the case of the “Most &
Least similar” subset for 200 voxels, outperforming the w2vec model (0.73 correlation). Especially for
the case of the “Most similar” evaluation subset, we observe a remarkable difference between the two
models, i.e., 0.83 vs. 0.14 for the neural and the w2vec model, respectively.

6 Classification and Entailment Experiments

Next we present the performance of the neural activation semantic model for a taxonomy creation (se-
mantic class classification), sensory modality (sense) classification, and lexical entailment task. Neural
vectors are averaged across participants and evaluated both standalone and in combination (early or late
fusion) with traditional word embedding models.

6.1 Taxonomy Creation

The performance of similarities computed by Eq. 3 were also evaluated on a taxonomy creation task on
the ESSLLI dataset (Baroni et al., 2008). Taxonomy creation is performed using the neural activation
vectors ~y(w) estimated from Eq. 2 and the coefficient vectors ~b defined in Eq. 3 trained using linear
regression on the whole of the MEN dataset. Then, the similarity matrix S(wi, wj) is estimated for all
pairs in the dataset using Eq. 3 and then the spectral clustering algorithm proposed in (Ng et al., 2001)
is applied to obtain the lexical classes. In this work, neural fusion refers to early fusion (vector concate-
nation) of word vectors and neural activation vectors. We used a purity-based metric for evaluating the
quality of the automatically created clusters. The purity P of the taxonomy is defined as in (Baroni and
Lenci, 2010):

P =
1

d

k∑
i=1

max
j

(eij), (5)

where eij is the number of nouns assigned to the ith cluster that belong to the jth groundtruth class, k
is the number of clusters, and d is the total number of concrete nouns included in the dataset. Purity
expresses the fraction of nouns that belong to the true class, which is most represented in the cluster,
taking values in the range [0,1].

Dataset Neural Model w2vec Neural Fusion
ESSLI (6 classes) 0.61 0.70 0.71
ESSLI (3 classes) 0.77 0.95 0.95
ESSLI (2 classes) 0.66 0.77 0.72

Table 3: Evaluation results for taxonomy creation.

The evaluation results are presented in Table 3 for the neural activation model, the w2vec word em-
beddings (Mikolov et al., 2013) trained on the GoogleNews corpus and the late fusion of the two models
(denoted as neural fusion) with equal weighting of their similarity matrices S. All results shown are
computed on V = 250 voxels. The neural model performs worse that the w2vec model in all three
subtasks (6, 3 or 2 classes), however, the proposed neural fusion achieves the best purity scores for 6 and
3 classes, at 0.71 and 0.95 purity, respectively.

6.2 Sense Classification

For the sensory modality (sense) classification task we use the Sensicon dataset to evaluate the perfor-
mance of our model regarding sense discrimination. By definition all nouns in Sensicon are concrete
nouns since they are associated with a real-world sensory stimulus. Sense classification is performed as

5The differences between the similarity scores estimated by our model and the baseline (i.e., w2vec) were found to be
statistically significant at 99% level according to paired-sample t-test.



described in the previous section, i.e., the similarity matrix in Eq. 3 is calculated using the weight vector
~b trained on the MEN dataset and then the spectral clustering (Ng et al., 2001) is applied for the five
sense categories. The resulting clusters are used for sense classification either between two senses, one
versus all or among all five senses.

Classes Neural Model w2vec Neural Fusion
Vision, Audition 0.55 0.55 0.57

Vision, Touch 0.68 0.66 0.69
Vision, Taste 0.60 0.60 0.61

Audition, Touch 0.59 0.58 0.59
Audition, Taste 0.57 0.55 0.57

Taste, Touch 0.54 0.54 0.54
Vision, Other 0.68 0.68 0.68

Audition, Other 0.74 0.74 0.74
Touch, Other 0.81 0.81 0.81
Taste, Other 0.78 0.78 0.79

Audition, Vision, Smell, Touch, Taste 0.37 0.33 0.39

Table 4: Evaluation results for two-way, one-vs-all, and five-way sense classification.

The evaluation results6 are presented in Table 4 for the neural model, the w2vec model (same as the
one used in the previous section) and the late fusion of the two (neural fusion) using equal weighting on
the similarity matrices S. The evaluation metric used is the purity of clusters defined in Eq. 5. All results
shown are computed on V = 250 voxels.

The neural and w2vec models achieve very similar results for two-way classification tasks, with the
neural model performing better 0.37 vs 0.33 for five-way sense classification. The neural fusion model
outperforms both neural and w2vec models for the majority of the two-way classification tasks and also
achieves top performance for the five-way classification task reaching 0.39 purity score. Overall, the
neural and neural fusion models show strong performance for this task, which is reasonable given the
localization of sensory representations in the human cortex.

These results are also consistent with neuroscientific research (Heed, 2010; Marieb and Hoehn, 2007;
Kobayashi, 2006; Ungerleider, 1982; Pickles, 1988; Buck and Axel, 1991).

6.3 Entailment Task
Next, we applied the neural activations to an entailment classification task. We used a Bi-LSTM model
proposed in (Rocktäschel et al., 2015) featuring contextual attention (see Figure 2) as our baseline model.
Word embeddings for concrete nouns were estimated using GloVe as detailed in (Pennington et al., 2014)
and used as input to the Bi-LSTM network. The neural activations vectors were then combined via early
fusion (vector concatenation) with GloVe embeddings (Pennington et al., 2014). Evaluation results for
GloVe vectors and neural fusion are shown in Table 5 in terms of prediction accuracy. The results are

Dataset(SNLI) Dimensions (GloVe, neural) GloVe Neural Fusion
3-common (300,250) 68.2 68.7
2-common (300,250) 76.6 77.7

Table 5: Entailment task accuracy for GloVe and neural fusion vector input to the Bi-LSTM.

reported for two subsets of the SNLI dataset, namely, 3-common and 2-common (see section 4).
We observe that the top accuracy is achieved by the fusion scheme for both the 3-common and 2-

common subsets (68.7± 0.9% and 77.7± 0.9%).
6Note that the sense smell is not always present in Table 4 because smell has only four nouns compared in to other senses

that contain more than 100 nouns each.
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Figure 2: Bi-LSTM with context attention used in our experiments. Words’ representations are either
pretrained word embeddings or fusion of neural activations and word embeddings.

7 Conclusion

We proposed a simple neural activation semantic model extending the work of (Mitchell et al., 2008).
The performance of the neural model was investigated for the tasks of word semantic similarity, taxon-
omy creation, sensory modality classification and concept entailment.

The analysis of the neural model word performance showed that the proposed model can differentiate
between very similar and very dissimilar concrete nouns better than state-of-the-art word embeddings
semantic models, while it performs worse overall for the word semantic similarity task. This is a strong
indication that the semantic discriminability of neural activation vectors is of a different flavor than that
of traditional word embedding vectors, and thus neural vectors can be used to augment state-of-the-art
semantic representations. Results on the taxonomy classification, sense classification and entailment
task indeed verify the different flavor of neural embeddings. For certain tasks, e.g., sense classification,
neural models provide state-of-the-art performance. For other tasks, the fusion of neural and word2vec
embeddings provides significant improvement. Overall (predicted) localized neural activation vectors
can also be used in conjunction with other semantic representations and deep architectures to improve
the results in challenging tasks, like concept entailment.

Although the collection of neuroimaging data has many limitations such as variation across partici-
pants, high signal-to-noise ratio and the need of expensive equipment for data capture, it provides an
alternative view of how lexical and sensory information in localized in the human brain. Despite the
very small dataset used in our experiments, results are encouraging about the value of neural activations
patterns for computational tasks. In future work, we will investigate the relative performance of neural
activations for a variety of natural language processing tasks, how to build neural vector predictors for
the whole dictionary via lexical expansion, as well as more efficient fusion algorithms of neural and
traditional word embedding models.
Acknowledgements. This work has been partially supported by EU H2020 BabyRobot project (grant
#687831). Also, the authors would like to thank Christos Baziotis and Georgios Paraskevopoulos for
many useful discussions.
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